Methanotrophic Treatment Technology

Author(s):  
R. Legrand
Keyword(s):  
2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Arie Herlambang

In the event of natural disasters such as earthquakes, tsunamis, landslides, floods and droughts, water occupies a key role in disaster relief. The presence of water is important for drinking, cooking and support the refugee areas of environmental sanitation and avoiding disaster victims of diseases waterborn disease. Water problem in disaster conditions may occur partly as a result: the disturbance of water sources because change of water quality, to become turbid or salty, the destruction of a piping system, treatment plant damage, disruption of distribution systems, or the scarcity of water in evacuation areas. Introduction of water quality becomes important to determine which process technology will be used and saved investments in emergency conditions. Priority handling of clean water usually comes first in the refugee areas with communal system, because the need of water for bathing, washing and toilet is big enough, while for a drink in the early events during disaster dominated by bottled water, but for their long-term, they have to boil water. For remote areas and difficult to reach individuals who usually use  system more simple and easily operated. Water Supply Technology for emergency response has the characteristic 1). Able to operate with all sorts of water conditions (flexible adaptable), 2). Can be operated easily, 3). Does not require much maintenance, 4). Little use of chemicals, and 5). Portable and easy removable (Mobile System). Keywords :  Water Quality, Water Treatment Technology, Drinking Water, Emergency Response, filtration, ceramic filtration, Ultra filtration, Reverse Osmosis, Ultraviolet Sterilizer, Ozonizer, Disinfection.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


Sign in / Sign up

Export Citation Format

Share Document