Reasonable design method of shield tunnel lining under internal water pressure

Author(s):  
N. Okano ◽  
S. Konishi ◽  
K. Kobayashi ◽  
A. Koenuma ◽  
K. Ohishi ◽  
...  
2011 ◽  
Vol 368-373 ◽  
pp. 2744-2748
Author(s):  
Li Xin Li ◽  
Xiao Long Geng ◽  
Man Li

The internal force and deformation of shield tunnel segment lining are influenced by many kinds of characteristic parameters. By the elastic foundation circle method, this paper takes the example of the first phase of the project of the Shenyang metro line 2, analyzing the influence of each characteristic parameter on internal force and deformation of the lining, and summarizing rules for the design of shield tunnel lining.


2015 ◽  
Vol 17 (3) ◽  
pp. 227-236 ◽  
Author(s):  
Young-Joon Lee ◽  
Ki-Lim Kim ◽  
Keon-Woong Jeong ◽  
Eui-Joon Hong ◽  
Seon-Hong Kim ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xue Li ◽  
Shunhua Zhou ◽  
Honggui Di

Accurately evaluating the ground pressure on the tunnel lining greatly helps the structure design of a tunnel. In this study, the earth pressure and water pressure on the tunnel lining of four cross sections of a metro tunnel were measured and analyzed and then compared with the theoretical values. Results show that the values and distribution of observed ground pressure acting on the lining are different for different overburden depths. The water pressure measured on-site is approximately equal to the theoretical hydrostatic pressure. The water pressure acting on the shield tunnel lining does not fluctuate with the shield tunnel excavation. The maximum ground pressure was measured in the process of backfill grouting, and the maximum values are approximately larger than 30% of the stable value of the measured pressure. For a shield tunnel under a river with deep water, the water pressure on the lining is dominant and the observed total ground pressure is nearly equal to the water pressure. The findings presented in this paper can provide a reference for the structure design of similar tunnel projects.


2020 ◽  
Vol 97 ◽  
pp. 103290 ◽  
Author(s):  
Linchong Huang ◽  
Jianjun Ma ◽  
Mingfeng Lei ◽  
Linghui Liu ◽  
Yuexiang Lin ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1303
Author(s):  
Chenghua Shi ◽  
Xiaohe Sun ◽  
Shengli Liu ◽  
Chengyong Cao ◽  
Linghui Liu ◽  
...  

At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety.


2005 ◽  
Vol 42 (6) ◽  
pp. 1585-1599 ◽  
Author(s):  
J H Shin ◽  
D M Potts ◽  
L Zdravkovic

Tunnelling in a water bearing soil often produces a long-term interaction between the tunnel lining and the surrounding soil. With respect to lining design, infiltration and external pore-water pressures are often one of the most important factors to be considered. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. This can be particularly troublesome to structural and functional components of the tunnel and can often lead to structural failure. However, as a result of the complicated hydraulic boundary conditions and the long times often required for pore pressure equilibration, research on this subject is scarce. Consequently, most design approaches deal with the effects of pore-water pressure on the tunnel lining in a qualitative manner. In this paper, the development of pore-water pressure and its potential effects on the tunnel lining are investigated using the finite element method. In particular, the deterioration of a drainage system caused by clogging is considered. It is shown that the development of pore-water pressure on the lining is dependent on the lining permeability and the deterioration of the drainage system, particularly for a tunnel with both a primary and a secondary lining. The magnitude of pore-water pressure on a new Austrian tunnelling method (NATM) tunnel constructed in decomposed granite soil and the effect of tunnel shape are investigated. Design curves for estimating pore-water pressure loads on a secondary lining are proposed.Key words: numerical analysis, tunnel lining, decomposed granite.


Sign in / Sign up

Export Citation Format

Share Document