Effects of an Oscillating Magnetic Field on the Stability of Stored Grain Produce

Author(s):  
M. Selvamuthukumaran
2008 ◽  
Vol 8 (6) ◽  
pp. 2897-2900
Author(s):  
Przemysław Gawrónski ◽  
Krzysztof Kułakowski

New results are reported of the computer simulations on the magnetic behaviour of magnetic arrays of nanoscopic dots, placed in cells of the square lattice. We show that the remanence magnetization Mr decreases with the array size. For arrays 50 × 50, we investigate also the stability of the magnetic structure of an array in an oscillating magnetic field. The damage spreading technique reveals that this stability increases with the standard deviation σ of the switching field of individual elements of the array. On the other hand, Mr decreases with σ. An optimalization of the system (large Mr and large stability) can then be reached at some intermediate value of σ.


2005 ◽  
Vol 2005 (23) ◽  
pp. 3727-3737 ◽  
Author(s):  
Jitender Singh ◽  
Renu Bajaj

Effect of an axially applied magnetic field on the stability of a ferrofluid flow in an annular space between two coaxially rotating cylinders with nonaxisymmetric disturbances has been investigated numerically. The critical value of the ratioΩ∗of angular speeds of the two cylinders, at the onset of the first nonaxisymmetric mode of disturbance, has been observed to be affected by the applied magnetic field.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2018 ◽  
Vol 866 (2) ◽  
pp. 86 ◽  
Author(s):  
Oleg Cheremnykh ◽  
Viktor Fedun ◽  
Yu. Ladikov-Roev ◽  
Gary Verth

2018 ◽  
Vol 9 ◽  
pp. 1512-1526 ◽  
Author(s):  
Tudor D Stanescu ◽  
Anna Sitek ◽  
Andrei Manolescu

We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and reduces the value of the critical field associated with the topological quantum phase transition.


Sign in / Sign up

Export Citation Format

Share Document