Feasibility study of lightweight asphalt concrete in large flexibility steel bridge deck pavement

2020 ◽  
pp. 200-207
Author(s):  
C.C. Zhang ◽  
L.L. Chen ◽  
C.L. Jiang ◽  
G. Liu
2013 ◽  
Vol 330 ◽  
pp. 905-910 ◽  
Author(s):  
Cheng Zhu

The TAF epoxy asphalt concrete (EAC) is a new steel bridge deck pavement materials , the application of the TAF EAC is increasing in China. But the research for some of it's performance and construction technology is not throughly, which results in the useful life of the bridge deck paving materials greatly reducing. This paper focuses on the design and construction methods of the Japanese TAF epoxy asphalt concrete, and take the Humen bridge steel bridge deck pavement repair project in December 2011 for example.


Author(s):  
Jianlin Yuan ◽  
Junjie Yang

Along with the popularization and application of the steel bridge in China, due to the high modulus of asphalt concrete with good waterproof, anti-fatigue, anti-aging and good performance, asphalt concrete with high modulus was widely used in steel bridge deck pavement, the test and comparative study of high modulus asphalt concrete were carried out based on two types of common high modulus asphalt concrete which include the casting type asphalt concrete and epoxy resin modified asphalt concrete, aims to further explore the performance features of the steel bridge deck with high modulus asphalt concrete, and provide help on the application of this asphalt concrete on the steel bridge deck.


2020 ◽  
Vol 980 ◽  
pp. 239-243
Author(s):  
Xiu Liu ◽  
Xiao Mei Yu ◽  
Chu Ang Xu ◽  
Jiang Wei Chu

As the problem of asphalt concrete bridge deck pavement is becoming more and more serious, how to improve its road performance has become the focus of the study. As the lack of shear strength and bond strength between layers, flaking, raveling and other diseases were occurred on steel bridge deck asphalt pavement. This paper combines the common damages of bridge deck and asphalt concrete pavement in cold area of northeast region, focuses on the analysis of the cause of asphalt concrete pavement damage causes, puts forward preventive measures and recommendations, and present the bridge deck pavement structure in cold area combined with the engineering practice. The research results can effectively guide the construction of bridge deck pavement.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4555
Author(s):  
Yang Liu ◽  
Zhendong Qian ◽  
Yongning Wang ◽  
Yongchao Xue

Epoxy asphalt concrete (EAC) is a widely used steel bridge deck pavement (SBDP) material. Due to the curing reaction, the EAC-based material needs a long curing period before opening to traffic, which in an inconvenience in the construction of SBDP. This study developed a cold mix high-early-strength (CHES) epoxy asphalt through the design of a compatilizer and curing agent system. The optimum formula of CHES epoxy asphalt was determined through a series of laboratory tests. By comparison of the performances of CHES EAC and some conventional EACs for SBDP, it was found that the developed CHES epoxy asphalt can significantly reduce the curing period, and the pavement performance of CHES EAC is, overall, excellent for application in SBDP. In addition, the sufficient allowable construction duration shows that the CHES EAC has a good construction workability.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Wen Nie ◽  
Duanyi Wang ◽  
Yangguang Sun ◽  
Wei Xu ◽  
Xiaoquan Xiao

To comprehensively investigate the integrated structural and material design of the epoxy asphalt mixture used in steel bridge deck pavement, the following works have been conducted: 1. The strain level of steel bridge deck pavement was calculated; 2. The ultimate strain level of fatigue endurance for epoxy asphalt concrete was measured; 3. The effect of water tightness of epoxy asphalt mixture on the bonding performance of steel plate interface was tested. 4. For better performance evaluation, quantitative analysis of the anti-skid performance of epoxy asphalt mixture was carried out by testing the structure depth using a laser texture tester. Results show the following findings: 1. The fatigue endurance limit strain level of epoxy asphalt mixture (600 με) was higher than that of the steel bridge deck pavement (<300 με), indicating that the use of epoxy asphalt concrete has better flexibility and can achieve a longer service life in theory; 2. The epoxy asphalt concrete has significant water tightness to protect the steel plate interface from corrosion and ensure good bonding performance; 3. The porosity of epoxy asphalt mixture used in steel bridge deck paving should be controlled within 3%; 4. In terms of anti-skid performance of bridge deck pavement, the FAC-10 graded epoxy asphalt mixture is recommended when compared with EA-10C.


2021 ◽  
Vol 291 ◽  
pp. 123366
Author(s):  
Yang Liu ◽  
Zhendong Qian ◽  
Xijun Shi ◽  
Yuheng Zhang ◽  
Haisheng Ren

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 565
Author(s):  
Changbo Liu ◽  
Zhendong Qian ◽  
Yang Liao ◽  
Haisheng Ren

This study aims to evaluate the economy of a steel bridge deck pavement scheme (SBDPS) using a comprehensive life-cycle cost (LCC) analysis approach. The SBDPS are divided into the “epoxy asphalt concrete system”(EA system) and“ Gussasphalt concrete system”(GA system) according to the difference in the material in the lower layer of the SBDPS. A targeted LCC checklist, including manager cost and user cost was proposed, and a Markov-based approach was applied to establish a life-cycle performance model with clear probability characteristics for SBDPS. Representative traffic conditions were designed using a uniform design method, and the LCC of SBDPS under representative traffic conditions and different credibility (construction quality as a random factor) was compared. The reliability of the LCC analysis approach was verified based on the uncertainty analysis method. Based on an expert-scoring approach, a user cost weight was obtained to ensure it is considered reasonably in the LCC analysis. Compared with the cumulative traffic volume, the cumulative equivalent single axle loads (CESAL) have a closer relationship with the LCC. The GA system has better LCC when the CESAL is less, while the EA system is just the opposite. The breaking point of CESAL for the LCC of the EA system and the GA system is 15 million times. The LCC analysis of SBDPS should consider the influence of random factors such as construction quality. The comprehensive LCC analysis approach in this paper can provide suggestions for bridge-management departments to make a reasonable selection on SBDPS.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 155
Author(s):  
Xun Qian Xu ◽  
Wei Yang ◽  
Hong Liang Xiang ◽  
Jian Bo Wang ◽  
Xiao Yang

The crack initiation and life prediction of fiber-reinforced asphalt concrete (FRAC) surfacing for steel bridge decks under a cyclic vehicle load are analyzed from the perspective of damage mechanics. The damage field and the stress and strain field evolution rule of a composite beam in fatigue test are studied, and a fatigue failure criterion is proposed for steel deck FRAC surfacing. Bending fatigue tests are performed on composite beams composed of a steel deck and polyacrylonitrile (PAN)-fiber-reinforced Gussasphalt (GA), i.e., GA-PAN, concrete surfacing under different fiber content and temperature conditions. The damage evolution characteristics of GA-PAN concrete surfacing over the steel deck with different fiber lengths and volume ratios are predicted by analyzing the fatigue life equations. The results show that the steel bridge deck FRAC surfacing model can reflect the comprehensive influence of the fiber content and length on the fatigue performance of steel bridge AC. Specifically, a lower temperature results in the fiber more synergistically affecting the fatigue resistance of AC. Theoretically, the service performance of asphalt concrete increases with the increase of fiber length and content. The optimum fiber length and volume ratio of GA-PAN are found to be 9 mm and 0.46–0.48%, respectively, considering the construction workability.


Sign in / Sign up

Export Citation Format

Share Document