Results of studying chilled ceiling unit operation

Author(s):  
T.A. Datciuk ◽  
D.M. Denisikhina
MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3153-3161
Author(s):  
Marco Antonio Juárez Sánchez ◽  
Miguel Ángel Meléndez Lira ◽  
Celestino Odín Rodríguez Nava

AbstractDrug contamination in water is one of the current fields of study. Since 1990, the presence of drugs in drinking water has been a concern to scientists and public. In Mexico, these organic compounds are not efficiently removed in wastewater treatment plants; therefore, alternative methodologies have been studied that allow these compounds to have a high percentage of degradation or be completely degraded. One example of these techniques is heterogeneous photocatalysis which has obtained positive results in the degradation of drugs using ZnO nanoparticles. These are commonly selected for their electrical characteristics, even though they disperse in water and an additional unit operation is required to separate them from the liquid medium. To eliminate drugs with nano particles in a single stage, polycaprolactone-based membranes with adhered ZnO nanoparticles, by means of electrospinning, were prepared to degrade drugs such as diclofenac. The technique used has shown to efficiently break down diclofenac in 4 hours according to the capillary electrophoresis readings.


Author(s):  
Roger G. Harrison ◽  
Paul W. Todd ◽  
Scott R. Rudge ◽  
Demetri P. Petrides

Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products. New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.


Author(s):  
V. Gall ◽  
E. Rütten ◽  
H. P. Karbstein

AbstractHigh-pressure homogenization is the state of the art to produce high-quality emulsions with droplet sizes in the submicron range. In simultaneous homogenization and mixing (SHM), an additional mixing stream is inserted into a modified homogenization nozzle in order to create synergies between the unit operation homogenization and mixing. In this work, the influence of the mixing stream on cavitation patterns after a cylindrical orifice is investigated. Shadow-graphic images of the cavitation patterns were taken using a high-speed camera and an optically accessible mixing chamber. Results show that adding the mixing stream can contribute to coalescence of cavitation bubbles. Choked cavitation was observed at higher cavitation numbers σ with increasing mixing stream. The influence of the mixing stream became more significant at a higher orifice to outlet ratio, where a hydraulic flip was also observed at higher σ. The decrease of cavitation intensity with increasing back-pressure was found to be identical with conventional high-pressure homogenization. In the future, the results can be taken into account in the SHM process design to improve the efficiency of droplet break-up by preventing cavitation or at least hydraulic flip.


Desalination ◽  
2007 ◽  
Vol 214 (1-3) ◽  
pp. 11-30 ◽  
Author(s):  
John Pellegrino ◽  
Craig Gorman ◽  
Laura Richards

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Nasr M. Hosny

In a large capacity tangentially fired boiler, the final reheater tubing sustained abnormal oxidation and localized excessive metal wastage in a short time of the unit operation. The root causes of the problem are identified by test data analysis. The test data indicated that the reheater tubing metal temperatures in the affected areas exceeded the recommended limit of the metal oxidation temperature due to higher than expected local gas temperatures and velocities. A soot-blower facing the overheated portion of the reheater leading tubes accelerated the process of metal wastage by periodically removing the oxide layer. The configuration of the boiler internals upstream of the reheater section is found to be the main cause of the localized overheating. Side-to-side gas flow/temperature stratification due to tangential firing contributed to a lesser degree to the problem. The results and conclusions presented in this paper should be a beneficial guide to the designer of large capacity boilers.


Author(s):  
Neel J. Parikh ◽  
Peter Rogge ◽  
Kenneth Luebbert

Coal-fired units are increasingly expected to operate at varying loads while simultaneously dealing with various operational influences as well as fuel variations. Maintaining unit load availability while managing adverse effects of various operational issues such as, flue gas temperature excursions at the SCR inlet, high steam temperatures and the like presents significant challenges. Dynamic adjustment of sootblowing activities and different operational parameters is required to effectively control slagging, fouling and achieve reliability in unit operation. Closed-loop optimizers aim to reduce ongoing manual adjustments by control operators and provide consistency in unit operation. Such optimizers are typically computer software-based and work by interfacing an algorithmic and/or artificial intelligence based decision making system to plant control system [1]. KCP&L is in the process of implementing Siemens SPPA-P3000 combustion and sootblowing optimizers at several Units. The Sootblowing Optimizer solution determines the need for sootblowing based on dynamic plant operating conditions, equipment availability and plant operational drivers. The system then generates sootblower activation signals for propagation in a closed-loop manner to the existing sootblower control system at ‘optimal’ times. SPPA-P3000 Sootblowing Optimizer has been successfully installed at Hawthorn Unit 5, a 594-MW, wall-fired boiler, firing 100 percent Powder River Basin coal. This paper discusses implementation approach as well as operational experience with the Sootblowing Optimizer and presents longer-term operational trends showing unit load sustainability and heat rate improvement.


2006 ◽  
Vol 324-325 ◽  
pp. 835-838
Author(s):  
Aleš Belšak ◽  
Jože Flašker

A crack in the tooth root, which often leads to failure in gear unit operation, is the most undesirable damage caused to gear units. This article deals with fault analyses of gear units with real damages. Numerical simulations of real operating conditions have been used in relation to the formation of those damages. A laboratory test plant has been used and a possible damage can be identified by monitoring vibrations. The influences of defects of a single-stage gear unit upon the vibrations they produce are presented. Signal analysis has been performed also in concern to a non-stationary signal, using the Time Frequency Analysis tools. Typical spectrograms, which are the result of reactions to damages, are a very reliable indication of the presence of damages.


Sign in / Sign up

Export Citation Format

Share Document