Biochemical Analysis of Biomass, Community Structure, Nutritional Status, and Metabolic Activity of Microbial Communities in Soil

2021 ◽  
pp. 229-262
Author(s):  
Anders Tunlid ◽  
David C. White

In sediments and soils the extant microbiota that can be counted by direct microscopy have proved exceedingly difficult to isolate and culture. Classical tests are time consuming and provide little indication of the interactions within the community, the community nutritional status or metabolic activity. The in situ method is based on the extraction of ‘signature’ lipid biomarkers (SLB) from the cell membranes and walls of microorganisms. Lipids are cellular components that are recoverable by extraction with organic solvents. Lipids are an essential component of the membrane of all cells and play a role as storage materials. Extraction of the lipid components of the microbiota from soils and sediments provides both purification and concentration together with an in situ quantitative analysis of the microbial biomass, community structure, and nutritional status. The determination of the total phospholipid ester-linked fatty acids (PLFA) provides a quantitative measure of the viable biomass. Viable microbes have an intact membrane which contains phospholipids (and PLFA). With cell death enzymes hydrolyze the phosphate group within minutes to hours. The lipid core remains as diglyceride (DG). The resulting DG has the same signature fatty acids as the phospholipids (until it degrades) so a comparison of the ratio of PLFA to DG provides an indication of the viable and nonviable microbes. Analysis by SLB technique provides a quantitative definition of the microbial community structure as specific groups of microbes contain characteristic PLFA patterns. The analysis of other lipids such as the sterols (for the microeukaryotes -nematodes, algae, protozoa), glycolipids (for the phototrophs, gram-positive bacteria), or the hydroxy fatty acids in the lipopolysaccharide of the lipid A (gramnegative bacteria) can provide more detailed community structure analysis. The formation of poly (3-hydroxyalkanoic acid (PHA) in bacteria or triglyceride (TG) in the microeukaryotes relative to the PLFA provides a measure of the nutritional status. Bacteria grown with adequate carbon and terminal electron acceptors form PHA when they cannot divide, because some essential component is missing. Rates of incorporation of 14 C-acetate into PHA relative to PLFA is a sensitive indicator of disturbance artifacts in estimates of metabolic activity in sediments with redox gradients. Exposure to toxic environments can lead to minicell formation and increases in specific PLFAS. Respiratory quinone structure indicates the proportions of aerobic/anaerobic activities in the community. The SLB technology provides quantitative in situ information that define the microbial ecology in sedimentary geochemical processes.


2000 ◽  
Vol 66 (1) ◽  
pp. 345-351 ◽  
Author(s):  
Ching-Hong Yang ◽  
David E. Crowley

ABSTRACT Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.


2014 ◽  
Vol 1051 ◽  
pp. 311-316 ◽  
Author(s):  
Xi Mei Luo ◽  
Zhi Lei Gao ◽  
Hui Min Zhang ◽  
An Jun Li ◽  
Hong Kui He ◽  
...  

In recent years, despite the significant improvement of sequencing technologies such as the pyrosequencing, rapid evaluation of microbial community structures remains very difficult because of the abundance and complexity of organisms in almost all natural microbial communities. In this paper, a group of phylum-specific primers were elaborately designed based on a single nucleotide discrimination technology to quantify the main microbial community structure from GuJingGong pit mud samples using the real-time quantitative PCR (qPCR). Specific PCR (polymerase chain reaction) primers targeting a particular group would provide promising sensitivity and more in-depth assessment of microbial communities.


2020 ◽  
Author(s):  
Wu Qu ◽  
Boliang Gao ◽  
Jie Wu ◽  
Min Jin ◽  
Jianxin Wang ◽  
...  

Abstract Background Microbial roles in element cycling and nutrient providing are crucial for mangrove ecosystems and serve as important regulators for climate change in Earth ecosystem. However, some key information about the spatiotemporal influences and abiotic and biotic shaping factors for the microbial communities in mangrove sediments remains lacking. Methods In this work, 22 sediment samples were collected from multiple spatiotemporal dimensions, including three locations, two depths, and four seasons, and the bacterial, archaeal, and fungal community structures in these samples were studied using amplicon sequencing. Results The microbial community structures were varied in the samples from different depths and locations based on the results of LDA effect size analysis, principal coordinate analysis, the analysis of similarities, and permutational multivariate ANOVA. However, these microbial community structures were stable among the seasonal samples. Linear fitting models and Mantel test showed that among the 13 environmental factors measured in this study, the sediment particle size (PS) was the key abiotic shaping factor for the bacterial, archaeal, or fungal community structure. Besides PS, salinity and humidity were also significant impact factors according to the canonical correlation analysis (p ≤ 0.05). Co-occurrence networks demonstrated that the bacteria assigned into phyla Ignavibacteriae, Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were the key biotic factors for shaping the bacterial community in mangrove sediments. Conclusions This work showed the variability on spatial dimensions and the stability on temporal dimension for the bacterial, archaeal, or fungal microbial community structure, indicating that the tropical mangrove sediments are versatile but stable environments. PS served as the key abiotic factor could indirectly participate in material circulation in mangroves by influencing microbial community structures, along with salinity and humidity. The bacteria as key biotic factors were found with the abilities of photosynthesis, polysaccharide degradation, or nitrogen fixation, which were potential indicators for monitoring mangrove health, as well as crucial participants in the storage of mangrove blue carbons and mitigation of climate warming. This study expanded the knowledge of mangroves for the spatiotemporal variation, distribution, and regulation of the microbial community structures, thus further elucidating the microbial roles in mangrove management and climate regulation.


2018 ◽  
Author(s):  
Maozhen Han ◽  
Melissa Dsouza ◽  
Chunyu Zhou ◽  
Hongjun Li ◽  
Junqian Zhang ◽  
...  

AbstractBackgroundAgricultural activities, such as stock-farming, planting industry, and fish aquaculture, can influence the physicochemistry and biology of freshwater lakes. However, the extent to which these agricultural activities, especially those that result in eutrophication and antibiotic pollution, effect water and sediment-associated microbial ecology, remains unclear.MethodsWe performed a geospatial analysis of water and sediment associated microbial community structure, as well as physicochemical parameters and antibiotic pollution, across 18 sites in Honghu lake, which range from impacted to less-impacted by agricultural pollution. Furthermore, the co-occurrence network of water and sediment were built and compared accorded to the agricultural activities.ResultsPhysicochemical properties including TN, TP, NO3--N, and NO2--N were correlated with microbial compositional differences in water samples. Likewise, in sediment samples, Sed-OM and Sed-TN correlated with microbial diversity. Oxytetracycline and tetracycline concentration described the majority of the variance in taxonomic and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Finally, the structure of microbial co-associations was influenced by the eutrophication and antibiotic pollution.ConclusionThese analyses of the composition and structure of water and sediment microbial communities in anthropologically-impacted lakes are imperative for effective environmental pollution monitoring. Likewise, the exploration of the associations between environmental variables (e.g. physicochemical properties, and antibiotics) and community structure is important in the assessment of lake water quality and its ability to sustain agriculture. These results show agricultural practices can negatively influence not only the physicochemical properties, but also the biodiversity of microbial communities associated with the Honghu lake ecosystem. And these results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu lake.


2020 ◽  
Vol 8 (6) ◽  
pp. 834
Author(s):  
Naihui Li ◽  
Danmei Gao ◽  
Xingang Zhou ◽  
Shaocan Chen ◽  
Chunxia Li ◽  
...  

Intercropping can achieve sustainable agricultural development by increasing plant diversity. In this study, we investigated the effects of tomato monoculture and tomato/potato-onion intercropping systems on tomato seedling growth and changes of soil microbial communities in greenhouse conditions. Results showed that the intercropping with potato-onion increased tomato seedling biomass. Compared with monoculture system, the alpha diversity of soil bacterial and fungal communities, beta diversity and abundance of bacterial community were increased in the intercropping system. Nevertheless, the beta-diversity and abundance of fungal community had no difference between the intercropping and monoculture systems. The relative abundances of some taxa (i.e., Acidobacteria-Subgroup-6, Arthrobacter, Bacillus, Pseudomonas) and several OTUs with the potential to promote plant growth were increased, while the relative abundances of some potential plant pathogens (i.e., Cladosporium) were decreased in the intercropping system. Redundancy analysis indicated that bacterial community structure was significantly influenced by soil organic carbon and pH, the fungal community structure was related to changes in soil organic carbon and available phosphorus. Overall, our results suggested that the tomato/potato-onion intercropping system altered soil microbial communities and improved the soil environment, which may be the main factor in promoting tomato growth.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Veronika Gvoždíková Javůrková ◽  
Erik D. Enbody ◽  
Jakub Kreisinger ◽  
Kryštof Chmel ◽  
Jakub Mrázek ◽  
...  

Abstract Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.


Sign in / Sign up

Export Citation Format

Share Document