MicroRNA in the Tumor Stroma: Diagnostic and Therapeutic Implications

2021 ◽  
pp. 287-314
Author(s):  
Tao Lu ◽  
Leon W. M. M. Terstappen ◽  
Jai Prakash
Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 93 ◽  
Author(s):  
James Jabalee ◽  
Rebecca Towle ◽  
Cathie Garnis

Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.


2014 ◽  
Vol 141 (2) ◽  
pp. 192-208 ◽  
Author(s):  
Lian Narunsky ◽  
Roni Oren ◽  
Filip Bochner ◽  
Michal Neeman

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexandra Giatromanolaki ◽  
Adrian L. Harris ◽  
Michael I. Koukourakis

Abstract Background Arginine (Arg) is essential for cancer cell growth and also for the activation of T cells. Thus, therapies aiming to reduce Arg utilization by cancer may prove detrimental for the immune response. Methods We examined the expression of two major enzymes involved in arginine depletion and replenishment, namely arginase ARG2 and argininosuccinate synthase ASS1, respectively, in a series of 98 NSCLCs. Their association with immune infiltrates and the postoperative outcome were also studied. Results ARG2 was expressed mainly by cancer-associated fibroblasts (CAFs) (58/98 cases; 59.2%), while ASS1 by cancer cells (75/98 cases; 76.5%). ASS1 and ARG2 expression patterns were not related to hypoxia markers. Auxotrophy, implied by the lack of expression of ASS1 in cancer cells, was associated with high angiogenesis (p < 0.02). ASS1 expression by cancer cells was associated with a high density of iNOS-expressing tumor-infiltrating lymphocytes (iNOS+TILs). ARG2 expression by CAFs was inversely related to the TIL-density and linked with poorer prognosis (p = 0.02). Patients with ASS1 expression by cancer cells had a better prognosis especially when CAFs did not express ARG2 (p = 0.004). Conclusions ARG2 and ASS1 enzymes are extensively expressed in NSCLC stroma and cancer cells, respectively. Auxotrophic tumors have a poor prognosis, potentially by utilizing Arg, thus reducing Arg-dependent TIL anti-tumor activity. ASS1 expression in cancer cells would allow Arg fueling of iNOS+TILs and enhance anti-tumor immunity. However, upregulation of ARG2 in CAFs may divert Arg from TILs, allowing immune escape. Identification of these three distinct phenotypes may be useful in the individualization of Arg-targeting therapies and immunotherapy.


2016 ◽  
Vol 213 (13) ◽  
pp. 2831-2833 ◽  
Author(s):  
Robert S. Kerbel ◽  
Yuval Shaked

In this issue of JEM, Chan et al. describe a novel way by which an investigational form of chemotherapy known as low-dose metronomic chemotherapy can inhibit tumor growth, which also has therapeutic implications for targeting tumor-initiating cells (TICs), the tumor stroma, and chemokine receptors, as well as invasion and metastasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Li ◽  
Hongming Zhu ◽  
Weixuan Sun ◽  
Xingru Yang ◽  
Qing Nie ◽  
...  

AbstractCancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, play an indispensable role in cancer initiation, progression, metastasis, and metabolism. The limitations of traditional treatments can be partly attributed to the lack of understanding of the role of the tumor stroma. For this reason, CAF targeting is gradually gaining attention, and many studies are trying to overcome the limitations of tumor treatment with CAF as a breakthrough. Glutamine (GLN) has been called a “nitrogen reservoir” for cancer cells because of its role in supporting anabolic processes such as fuel proliferation and nucleotide synthesis, but ammonia is a byproduct of the metabolism of GLN and other nitrogenous compounds. Moreover, in some studies, GLN has been reported as a fundamental nitrogen source that can support tumor biomass. In this review, we discuss the latest findings on the role of GLN and ammonia in the crosstalk between CAFs and cancer cells as well as the potential therapeutic implications of nitrogen metabolism.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaomeng Liu ◽  
Jin Xu ◽  
Bo Zhang ◽  
Jiang Liu ◽  
Chen Liang ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death and is one of the most difficult-to-treat cancers. Surgical resection and adjuvant therapy have limited effects on the overall survival of PDAC patients. PDAC exhibits an immunosuppressive microenvironment, the immune response predicts survival, and activation of immune system has the potential to produce an efficacious PDAC therapy. However, chimeric antigen receptor T (CAR-T) cell immunotherapy and immune checkpoint blockade (ICB), which have produced unprecedented clinical benefits in a variety of different cancers, produce promising results in only some highly selected patients with PDAC. This lack of efficacy may be because existing immunotherapies mainly target the interactions between cancer cells and immune cells. However, PDAC is characterized by an abundant tumor stroma that includes a heterogeneous mixture of immune cells, fibroblasts, endothelial cells, neurons and some molecular events. Immune cells engage in extensive and dynamic crosstalk with stromal components in the tumor tissue in addition to tumor cells, which subsequently impacts tumor suppression or promotion to a large extent. Therefore, exploration of the interactions between the stroma and immune cells may offer new therapeutic opportunities for PDAC. In this review, we discuss how infiltrating immune cells influence PDAC development and explore the contributions of complex components to the immune landscape of tumor tissue. The roles of stromal constituents in immune modulation are emphasized. We also predict potential therapeutic strategies to target signals in the immune network in the abundant stromal microenvironment of PDAC.


Sign in / Sign up

Export Citation Format

Share Document