Impacts of Vacancy Defects in Resonant Vibration

2021 ◽  
pp. 123-144
Author(s):  
Liu Chu
2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 23 (10) ◽  
pp. 6298-6308
Author(s):  
Chan Gao ◽  
Xiaoyong Yang ◽  
Ming Jiang ◽  
Lixin Chen ◽  
Zhiwen Chen ◽  
...  

The combination of defect engineering and strain engineering for the modulation of the mechanical, electronic and optical properties of monolayer transition metal dichalcogenides (TMDs).


ACS Nano ◽  
2021 ◽  
Author(s):  
Hope Bretscher ◽  
Zhaojun Li ◽  
James Xiao ◽  
Diana Yuan Qiu ◽  
Sivan Refaely-Abramson ◽  
...  

2021 ◽  
Vol 2 (7) ◽  
pp. 2398-2407
Author(s):  
Joshua J. Brown ◽  
Youxiang Shao ◽  
Zhuofeng Ke ◽  
Alister J. Page

First-principles calculations predict the stability and mobility of vacancy defects in niobium perovskite oxynitrides, aiding defect engineering for enhanced photocatalysis.


Author(s):  
Mohammad Zafari ◽  
Arun S. Nissimagoudar ◽  
Muhammad Umer ◽  
Geunsik Lee ◽  
Kwang S. Kim

The catalytic activity and selectivity can be improved for nitrogen fixation by using hollow sites and vacancy defects in 2D materials, while a new machine learning descriptor accelerates screening of efficient electrocatalysts.


2021 ◽  
pp. 1-5
Author(s):  
Joydeep Munshi ◽  
Ankit Roy ◽  
Shane Hansen ◽  
Chinedu E. Ekuma ◽  
Ganesh Balasubramanian

2021 ◽  
Vol 20 (2) ◽  
pp. 798-804
Author(s):  
G. R. Berdiyorov ◽  
F. Boltayev ◽  
G. Eshonqulov ◽  
H. Hamoudi

AbstractThe effect of zinc and oxygen vacancy defects on the electronic transport properties of Ag(100)–ZnO(100)–Pt(100) sandwich structures is studied using density functional theory in combination with the nonequilibrium Green’s functional formalism. Defect-free systems show clear current rectification due to voltage dependent charge localization in the system as revealed in our transmission eigenstates analysis. Regardless of the location, oxygen vacancies result in enhanced current in the system, whereas Zn vacancy defects reduce the charge transport across the junction. The current rectification becomes less pronounced in the presence of both types of vacancy defects. Our findings can be of practical importance for developing metal-insulator-metal diodes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1292
Author(s):  
Qi Chu ◽  
Jingmeng Li ◽  
Sila Jin ◽  
Shuang Guo ◽  
Eungyeong Park ◽  
...  

In this paper, an Ag/MoO3 composite system was cosputtered by Ar plasma bombardment on a polystyrene (PS) colloidal microsphere array. The MoO3 formed by this method contained abundant oxygen vacancy defects, which provided a channel for charge transfer in the system and compensated for the wide band gap of MoO3. Various characterization methods strongly demonstrated the existence of oxygen vacancy defects and detected the properties of oxygen vacancies. 4-Aminothiophenol (p-aminothiophenol, PATP) was used as a candidate surface-enhanced Raman scattering (SERS) probe molecule to evaluate the contribution of the oxygen vacancy defects in the Ag/MoO3 composite system. Interestingly, oxygen vacancy defects are a kind of charge channel, and their powerful effect is fully reflected in their SERS spectra. Increasing the number of charge channels and increasing the utilization rate of the channels caused the frequency of SERS characteristic peaks to shift. This interesting phenomenon opens up a new horizon for the study of SERS in oxygen-containing semiconductors and provides a powerful reference for the study of PATP.


Sign in / Sign up

Export Citation Format

Share Document