Reactive Extrusion for the Production of Starch-based Biopackaging

Biopackaging ◽  
2017 ◽  
pp. 288-316 ◽  
Author(s):  
Tomy J. Gutiérrez ◽  
M. Paula Guarás ◽  
Vera A. Alvarez
Keyword(s):  
2003 ◽  
Vol 18 (3) ◽  
pp. 277-284 ◽  
Author(s):  
L. P. B. M. Janssen ◽  
P. F. Rozendal ◽  
H. W. Hoogstraten ◽  
M. Cioffi

2020 ◽  
Vol 40 (9) ◽  
pp. 727-735
Author(s):  
Rudinei Fiorio ◽  
Chaitanya Danda ◽  
João Maia

AbstractIn this study, thermoplastic polyurethanes (TPUs) containing trisilanol isooctyl polyhedral oligomeric silsesquioxane (POSS), a reactive nanofiller, were synthesized and characterized rheologically and morphologically, and the effects of POSS content on the melt thermal stability of the TPUs are investigated. Samples containing 0, 0.23, 0.57, 1.14, and 2.23% (w/w) POSS were synthesized by reactive extrusion and characterized by Fourier transform infrared spectroscopy (FTIR), oscillatory and extensional rheometry, atomic force microscopy (AFM), and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively). The rheological properties of molten TPU are time-dependent and the melt thermal stability of the TPU is maximal at 1.14% of POSS. The addition of 0.23 and 0.57% POSS promotes strain-hardening at low extensional strain rates (0.01 and 0.10 s−1), not affecting the extensional characteristics at higher strain rates. The addition of increasing amounts of POSS leads to the formation of POSS-rich clusters well dispersed in the TPU matrix. SAXS and WAXS results show that the POSS domains are amorphous and that POSS does not modify the crystalline structure of TPU. Therefore, this work indicates that synthesizing TPU in the presence of trisilanol isooctyl POSS can increase the melt thermal stability of the polymer, facilitating its processing.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1137
Author(s):  
Sascha Stanic ◽  
Thomas Koch ◽  
Klaus Schmid ◽  
Simone Knaus ◽  
Vasiliki-Maria Archodoulaki

Blends of two long-chain branched polypropylenes (LCB-PP) and five linear polypropylenes (L-PP) were prepared in a single screw extruder at 240 °C. The two LCB-PPs were self-created via reactive extrusion at 180 °C by using dimyristyl peroxydicarbonate (PODIC C126) and dilauroyl peroxide (LP) as peroxides. For blending two virgin and three recycled PPs like coffee caps, yoghurt cups and buckets with different melt flow rate (MFR) values were used. The influence of using blends was assessed by investigating the rheological (dynamic and extensional rheology) and mechanical properties (tensile test and impact tensile test). The dynamic rheology indicated that the molecular weight as well as the molecular weight distribution could be increased or broadened. Also the melt strength behavior could be improved by using the two peroxide modified LCB-PP blends on the basis of PODIC C126 or PEROXAN LP (dilauroyl peroxide). In addition, the mechanical properties were consistently enhanced or at least kept constant compared to the original material. In particular, the impact tensile strength but also the elongation at break could be increased considerably. This study showed that the blending of LCB-PP can increase the investigated properties and represents a promising option, especially when using recycled PP, which demonstrates a real “up-cycling” process.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1246
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Mona Stefanakis ◽  
Marc Brecht ◽  
Thomas Chassé ◽  
...  

We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.


2021 ◽  
Vol 41 ◽  
pp. 101919
Author(s):  
Oliver Uitz ◽  
Pratik Koirala ◽  
Mehran Tehrani ◽  
Carolyn Conner Seepersad

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hao Chen ◽  
João M. Maia

Abstract Extensional mixing elements (EMEs) that impose extension-dominated flow via stationary single-plane or double-plane hyperbolic converging-diverging channels were previously designed for twin-screw and single-screw extruders (TSE and SSE, respectively). In a recently published work by the authors, reactive extrusion was performed on PS/PA6 polymer blends TSE using EMEs and a crystalline phase transition of the minor phase in these droplets was observed as the size of droplet decreases from micron to submicron. Herein, we expand upon this work to SSE and study: a) The ability of the EMEs to improve dispersive mixing in the same blends; b) Assess the possibility of achieving the same crystalline phase transition in SSEs. The final blends were characterized by DSC, rheologically and morphologically via SEM, and the results show that while EME-based SSE leads to much improved mixing, better than non-EME TSE, the reduction in size of the PA6 disperse phase is not enough to induce the phase transition observed in EME-based TSE.


Sign in / Sign up

Export Citation Format

Share Document