Synthetic Approach for Polyurethane from Renewable Materials (Cashew Nut Husk Tannin)

2018 ◽  
pp. 91-106
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1905
Author(s):  
Junyi Chen ◽  
Xutao Ma ◽  
Kevin J. Edgar

Polysaccharide conjugates are important renewable materials. If properly designed, they may for example be able to carry drugs, be proactive (e.g., with amino acid substituents) and can carry a charge. These aspects can be particularly useful for biomedical applications. Herein, we report a simple approach to preparing polysaccharide conjugates. Thiol-Michael additions can be mild, modular, and efficient, making them useful tools for post-modification and the tailoring of polysaccharide architecture. In this study, hydroxypropyl cellulose (HPC) and dextran (Dex) were modified by methacrylation. The resulting polysaccharide, bearing α,β-unsaturated esters with tunable DS (methacrylate), was reacted with various thiols, including 2-thioethylamine, cysteine, and thiol functional quaternary ammonium salt through thiol-Michael addition, affording functionalized conjugates. This click-like synthetic approach provided several advantages including a fast reaction rate, high conversion, and the use of water as a solvent. Among these polysaccharide conjugates, the ones bearing quaternary ammonium salts exhibited competitive antimicrobial performance, as supported by a minimum inhibitory concentration (MIC) study and tracked by SEM characterization. Overall, this methodology provides a versatile route to polysaccharide conjugates with diverse functionalities, enabling applications such as antimicrobial activity, gene or drug delivery, and biomimicry.


2020 ◽  
Vol 23 (21) ◽  
pp. 2295-2318 ◽  
Author(s):  
Sainath Zangade ◽  
Pravinkumar Patil

Most of the synthetic chemical transformation reactions involve the use of different organic solvents. Unfortunately, some of these toxic solvents are used in chemical laboratory, industry and have been considered a very serious problem for the health, safety of workers and environmental damage through pollution. The purpose of green chemistry is to provide a path that reduces or eliminates the use of such hazardous toxic solvents. Therefore, the key factor of the green synthetic approach is to utilize renewable materials, nontoxic chemical and to perform the reactions under solvent-free conditions. In this review, we have discussed most recent literature survey on applications of solvent-free techniques in organic synthesis which would offer a new opportunity to a researcher to overcome the problem of using environmental harmful solvents.


2019 ◽  
Vol 21 (6) ◽  
pp. 1186-1201 ◽  
Author(s):  
James Mgaya ◽  
Ginena B. Shombe ◽  
Siphamandla C. Masikane ◽  
Sixberth Mlowe ◽  
Egid B. Mubofu ◽  
...  

Cashew nut shells, agro-waste generated from cashew nut factories, are rich in valuable bio-based green and renewable materials.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2019 ◽  
Author(s):  
Victor Y. Suzuki ◽  
Luís Henrique Cardozo Amorin ◽  
Natália H. de Paula ◽  
Anderson R. Albuquerque ◽  
Julio Ricardo Sambrano ◽  
...  

<p>We report, for the first time, new insights into the nature of the band gap of <a>CuGeO<sub>3</sub> </a>(CGO) nanocrystals synthesized from a microwave-assisted hydrothermal method in the presence of citrate. To the best of our knowledge, this synthetic approach has the shortest reaction time and it works at the lowest temperatures reported in the literature for the preparation of these materials. The influence of the surfactant on the structural, electronic, optical, and photocatalytic properties of CGO nanocrystals is discussed by a combination of experimental and theoretical approaches, and that results elucidates the nature of the band gap of synthetized CGO nanocrystals. We believe that this particular strategy is one of the most critical parameters for the development of innovative applications and that result could shed some light on the emerging material design with entirely new properties.</p> <p><b> </b></p>


2018 ◽  
Author(s):  
Marc Montesinos-Magraner ◽  
Matteo Costantini ◽  
Rodrigo Ramirez-Contreras ◽  
Michael E. Muratore ◽  
Magnus J. Johansson ◽  
...  

Asymmetric cyclopropane synthesis currently requires bespoke strategies, methods, substrates and reagents, even when targeting similar compounds. This limits the speed and chemical space available for discovery campaigns. Here we introduce a practical and versatile diazocompound, and we demonstrate its performance in the first unified asymmetric synthesis of functionalized cyclopropanes. We found that the redox-active leaving group in this reagent enhances the reactivity and selectivity of geminal carbene transfer. This effect enabled the asymmetric cyclopropanation of a wide range of olefins including unactivated aliphatic alkenes, enabling the 3-step total synthesis of (–)-dictyopterene A. This unified synthetic approach delivers high enantioselectivities that are independent of the stereoelectronic properties of the functional groups transferred. Our results demonstrate that orthogonally-differentiated diazocompounds are viable and advantageous equivalents of single-carbon chirons<i>.</i>


Sign in / Sign up

Export Citation Format

Share Document