Stimuli-Responsive Polymeric Biomaterials

2019 ◽  
Vol 10 (3) ◽  
pp. 34 ◽  
Author(s):  
Carlos M. Wells ◽  
Michael Harris ◽  
Landon Choi ◽  
Vishnu Priya Murali ◽  
Fernanda Delbuque Guerra ◽  
...  

Over the past 10 years, stimuli-responsive polymeric biomaterials have emerged as effective systems for the delivery of therapeutics. Persistent with ongoing efforts to minimize adverse effects, stimuli-responsive biomaterials are designed to release in response to either chemical, physical, or biological triggers. The stimuli-responsiveness of smart biomaterials may improve spatiotemporal specificity of release. The material design may be used to tailor smart polymers to release a drug when particular stimuli are present. Smart biomaterials may use internal or external stimuli as triggering mechanisms. Internal stimuli-responsive smart biomaterials include those that respond to specific enzymes or changes in microenvironment pH; external stimuli can consist of electromagnetic, light, or acoustic energy; with some smart biomaterials responding to multiple stimuli. This review looks at current and evolving stimuli-responsive polymeric biomaterials in their proposed applications.


2015 ◽  
Vol 3 (42) ◽  
pp. 8224-8249 ◽  
Author(s):  
Ferdous Khan ◽  
Masaru Tanaka ◽  
Sheikh Rafi Ahmad

Fabrication of biomaterials scaffolds using various methods and techniques is discussed, utilising biocompatible, biodegradable and stimuli-responsive polymers and their composites. This review covers the lithography and printing techniques, self-organisation and self-assembly methods for 3D structural scaffolds generation, and smart hydrogels, for tissue regeneration and medical devices.


2020 ◽  
Vol 11 (24) ◽  
pp. 3940-3950 ◽  
Author(s):  
Patrick Verkoyen ◽  
Holger Frey

Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.


Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2003 ◽  
Vol 775 ◽  
Author(s):  
G.V.Rama Rao ◽  
Qiang Fu ◽  
Linnea K. Ista ◽  
Huifang Xu ◽  
S. Balamurugan ◽  
...  

AbstractThis study details development of hybrid mesoporous materials in which molecular transport through mesopores can be precisely controlled and reversibly modulated. Mesoporous silica materials formed by surfactant templating were modified by surface initiated atom transfer radical polymerization of poly(N-isopropyl acrylamide) (PNIPAAm) a stimuli responsive polymer (SRP) within the porous network. Thermo gravimetric analysis and FTIR spectroscopy were used to confirm the presence of PNIPAAm on the silica surface. Nitrogen porosimetry, transmission electron microscopy and X-ray diffraction analyses confirmed that polymerization occurred uniformly within the porous network. Uptake and release of fluorescent dyes from the particles was monitored by spectrofluorimetry and scanning laser confocal microscopy. Results suggest that the presence of PNIPAAm, a SRP, in the porous network can be used to modulate the transport of aqueous solutes. At low temperature, (e.g., room temperature) the PNIPAAm is hydrated and extended and inhibits transport of analytes; at higher temperatures (e.g., 50°C) it is hydrophobic and is collapsed within the pore network, thus allowing solute diffusion into or out of the mesoporous silica. The transition form hydrophilic to hydrophobic state on polymer grafted mesoporous membranes was determined by contact angle measurements. This work has implications for the development of materials for the selective control of transport of molecular solutes in a variety of applications.


Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Anna Kataki-Anastasakou ◽  
Jonathan C. Axtell ◽  
Selena Hernandez ◽  
RafalM. Dziedzic ◽  
Gary J. Balaich ◽  
...  

High affinity guest have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling widespread applications, but preventing CB[7] materials from being returned to their guest-free state for reuse. Here we present polyhedral boron clusters (carboranes) as strongly-binding, yet easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we prepared boron-functionalized 9<i>-</i>amino and 9-ammonium modified <i>ortho-</i>carboranes that bind to CB[7] with a <i>K<sub>a</sub></i>=10<sup>10</sup> M<sup>-1</sup>. Upon treatment with base, the <i>ortho</i>-carboranes<i> </i>readily undergo deboronation to yield anionic <i>nido</i>-carborane, a poor guest of CB[7], facilitating recovery of guest-free CB[7]. We showcase the utility of the modified <i>ortho</i>-carborane guest by recycling a CB[7]-functionalized resin. With this report, we introduce stimuli-responsive decomplexation as an additional consideration in the design of high affinity host-guest complexes.


Sign in / Sign up

Export Citation Format

Share Document