Contact Angle and Surface Tension Determination and Preparation of Solid Surfaces

Author(s):  
S. M. Mirnouri Langroudi ◽  
M. Ghasemi ◽  
A. Shahabi ◽  
H. Rezaei Nejad

The main purpose of this paper is to numerically investigate the contact angle of a bubble on a solid surface and the effect of bubble curvature on the surface tension. A computer code based on Molecular Dynamics method is developed. The code carries out a series of simulations to generate bubbles between two planar solid surfaces for different wettabilities. In our simulation, the surface wettability affects the bubble contact angle and curvature. The pair potential for the liquid–liquid and liquid-solid interaction is considered using Lennard-Jones model. Density profiles are locally calculated. Furthermore, surface tension is computed using Young-Laplace equation. It is observed that the gas pressure is independent of the bubble radius. However, the liquid pressure becomes more negative as the radius decreases. In addition, the amount of surface tension decreases by decrease of the radius.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yajuan Ji ◽  
Qingwen Dai ◽  
Wei Huang ◽  
Xiaolei Wang

Thermocapillary migration is an interfacial phenomenon that describes liquid flow on a nonisothermal surface from warm to cold regions in the absence of external forces. It is a typical lubricant loss mechanism in tribosystems. To ensure continued reliability of lubricated assemblies, knowledge of the migration capacity of different liquids and solids is needed. In the present work, migration experiments were conducted on various liquid lubricants on different solid surfaces. It was found that polar lubricants such as ionic liquids and polyethylene glycol hardly migrate on the tested surfaces, and the antimigration capacity of the polytetrafluoroethylene surface was discovered to be very high. Particular attention is paid to the migration mechanism associated with surface tension and contact angle. General guidelines for evaluating the migration capacities of different liquids on solids are proposed.


Langmuir ◽  
2010 ◽  
Vol 26 (19) ◽  
pp. 15289-15294 ◽  
Author(s):  
Dory Cwikel ◽  
Qi Zhao ◽  
Chen Liu ◽  
Xueju Su ◽  
Abraham Marmur

1922 ◽  
Vol 4 (4) ◽  
pp. 373-385 ◽  
Author(s):  
Wallace O. Fenn

The theoretical behavior of a hypothetical fluid cell in contact with flat and curved solid surfaces is discussed from the point of view of surface tension. An equation is derived for calculating the equilibrium position of the cell on a flat surface in terms of the surface tensions between the cell and the plasma, the plasma and the solid surface, and the solid surface and the cell. It is shown that the same equilibrium is predicted from consideration of the contact angle between the cell and the solid body. The relative surface energy has been calculated at various stages in the ingestion of a solid particle by a fluid cell four times as large in diameter, and it is thus shown that no particle will be ingested until the surface tensions are such that the cell would spread to infinity on a flat surface of the same substance. Here again the same equilibrium is predicted from considerations of the contact angle. The adhesiveness of blood cells to solid substances is shown to be a pure surface tension phenomenon, but in most reactions between living cells and solid bodies the fluidity of the protoplasm is also a factor of prime importance. The frequent occurrence of adhesiveness as a property of cells in contact with solid bodies is due in part to the fact that, by so adhering, the surface area of the cell not touching the solid is decreased.


Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


Author(s):  
Anpalaki J. Ragavan ◽  
Cahit A. Evrensel ◽  
Peter Krumpe

Altered surface and viscoelastic material properties of mucus during respiratory diseases have a strong influence on its clearance by cilia and cough. Combined effects of the surface properties (contact angle and surface tension) and storage modulus with relatively unchanged viscosity on displacement of the simulated mucus aliquot during simulated cough through a model adult human trachea is investigated. For the mucus simulants used in this study contact angle and surface tension increase significantly as storage modulus increase while viscosity remains practically unchanged. Displacement of mucus simulant aliquots increased significantly with increasing storage modulus (and contact angle) at a given cough velocity in the range between 5 meters/second (m/s) and 30 m/s with duration 0.3 s. Results suggest that the interactive effects of elasticity and surface properties may help facilitate mucus displacement at low cough velocities.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Zhou ◽  
Han Qiu ◽  
Qi Zhang ◽  
Mao Xu ◽  
Jiayuan Wang ◽  
...  

Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.


2019 ◽  
Vol 37 ◽  
Author(s):  
M.F.T. RAMOS ◽  
R.T.S. SANTOS ◽  
D.P. ALMEIDA ◽  
J.F.D. VECHIA ◽  
M.C. FERREIRA

ABSTRACT: The addition of adjuvants to herbicide solutions is aimed at preserving or enhancing the biological effect of treatment. However, it is commonly performed without knowledge of the physicochemical interactions between products. This study aimed to assess the effects of different addition sequences of the herbicide aminopyralid + fluroxypyr and adjuvants in the preparation of phytosanitary spray solutions on the surface tension and contact angle. Two experiments were carried out with herbicide doses of 1 and 2 L ha-1 associated with the adjuvants mineral oil (MO), silicone-polyether copolymer (SIL), and a mixture of phosphatidylcholine (lectin) and propionic acid (LEC), all at a proportion of 0.3% v v-1. The application rate was 150 L ha-1. Surface tension was measured by the pendant droplet method. Contact angle was measured on the adaxial and abaxial surfaces of leaves of the pasture weed Senna obtusifolia and parafilm. Preparation sequence did not change the contact angle on any of the analyzed surfaces at a dose of 1 L ha-1 of herbicide. For the dose of 2 L ha-1, the adjuvants SIL and LEC showed a higher spreading when previously added to the herbicide. MO resulted in a higher spreading when added after the herbicide, with higher surface coverage. Therefore, the preparation sequence influences the dispersion of phytosanitary spray solutions on targets.


Sign in / Sign up

Export Citation Format

Share Document