FRET-Based Determination of Protein Complex Structure at Nanometer Length Scale in Living Cells

2013 ◽  
Vol 23 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Thomas Walzthoeni ◽  
Alexander Leitner ◽  
Florian Stengel ◽  
Ruedi Aebersold

2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


2004 ◽  
Vol 443-444 ◽  
pp. 333-336
Author(s):  
N. Guillou ◽  
C. Livage ◽  
W. van Beek ◽  
G. Férey

Ni7(C4H4O4)4(OH)6(H2O)3. 7H2O, a new layered nickel(II) succinate, was prepared hydrothermally (180°C, 48 h, autogenous pressure) from a 1:1.5:4.1:120 mixture of nickel (II) chloride hexahydrate, succinic acid, potassium hydroxide and water. It crystallizes in the monoclinic system (space group P21/c, Z = 4) with the following parameters a = 7.8597(1) Å, b = 18.8154(3)Å, c = 23.4377(4) Å,ϐ = 92.0288(9)°, and V = 3463.9(2) Å3. Its structure, which contains 55 non-hydrogen atoms, was solved ab initio from synchrotron powder diffraction data. It can be described from hybrid organic-inorganic layers, constructed from nickel oxide corrugated chains. These chains are built up from NiO6hexameric units connected via a seventh octahedron. Half of the succinates decorate the chains, and the others connect them to form the layers. The three dimensional arrangement is ensured by hydrogen bonds directly between two adjacent layers and via free water molecules.


2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
R A Draviam ◽  
B Wang ◽  
S Shand ◽  
X Xiao ◽  
S C Watkins

2016 ◽  
Vol 184 (2) ◽  
pp. 603-610 ◽  
Author(s):  
Man Li ◽  
Hongfang Gao ◽  
Xiaofei Wang ◽  
Yufeng Wang ◽  
Honglan Qi ◽  
...  

Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


1990 ◽  
Vol 112 (3) ◽  
pp. 283-294 ◽  
Author(s):  
G. I. Zahalak ◽  
W. B. McConnaughey ◽  
E. L. Elson

In this paper we review the cell-poking technique as an approach for investigating the mechanical properties of living cells. We first summarize the rationale for the technique and the mainly qualitative results obtained so far. Then we provide a technical description of the instrument as it is configured at present. This is followed by a discussion of the current status of analytical results available for interpreting cell-poking measurements. In the final section we apply these results to an analysis of unmodulated and modulated lymphocytes and neutrophils, and conclude that the mechanical response of these leukocytes to indentation is not consistent with simple models developed by previous investigators on the basis of micropipette-aspiration experiments.


Sign in / Sign up

Export Citation Format

Share Document