scholarly journals Radiolabeling of methanol extracts of yarrow (Achillea millefolium l) in rats

2012 ◽  
Vol 27 (5) ◽  
pp. 294-300 ◽  
Author(s):  
Betul Cekic ◽  
Ayfer Yurt Kilcar ◽  
Fazilet Zumrut Biber Muftuler ◽  
Perihan Unak ◽  
Emin Ilker Medine

PURPOSE: Current study is focused on extraction with methanol, purification, labeling with 131I using iodogen method of the yarrow plant and investigating in vivo biological activity using biodistribution and imaging studies on healthy animal models. The aim of the study is to contribute plant extracts to discover new drugs in the diagnosis and treatment of several diseases. METHODS: Nine female and nine male healthy Wistar albino rats, which were approximately 100-150 g in weight, were used for biodistribution studies. For imaging studies four healthy male Balb-C mice were used. Quality control studies were done utilizing thin layer radio chromatography (TLRC) and high performance liquid chromatography (HPLC) methods. For biodistribution studies, 131I radiolabeled Peak 7 (131I-Peak 7) was sterilized and injected into the tail veil of rats and imaging studies were obtained using Kodak FX PRO in vivo Imaging System. RESULTS: The radiolabeling yield of each purified the bioactive extracts of the yarrow plant, seven peaks was between 79 and 92%. The highest radiolabeling yield was calculated for 131I radiolabeled seventh peak (131I-Peak 7) (92.78±5.04, n=5). For this reason the biodistribution and imaging studies were done for 131I-Peak 7. That's why; these studies with Peak 7 were carried out. CONCLUSION: Peak 7 was radiolabeled with 131I in high yield for using imaging and therapeutic studies in nuclear medical applications.

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Mir ◽  
Saba Ishtiaq ◽  
Samreen Rabia ◽  
Maryam Khatoon ◽  
Ahmad Zeb ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. H. Sanad ◽  
A. B. Farag ◽  
S. F. A. Rizvi

Abstract This study presents development and characterization of a radiotracer, [125I]iodonefiracetam ([125I]iodoNEF). Labeling with high yield and radiochemical purity was achieved through the formation of a [125I]iodoNEF radiotracer after investigating many factors like oxidizing agent content (chloramines-T (Ch-T)), substrate amount (Nefiracetam (NEF)), pH of reaction mixture, reaction time and temperature. Nefiracetam (NEF) is known as nootropic agent, acting as N-methyl-d-aspartic acid receptor ligand (NMDA). The radiolabeled compound was stable, and exhibited the logarithm of the partition coefficient (log p) value of [125I]iodonefiracetam as 1.85 (lipophilic). Biodistribution studies in normal mice confirmed the suitability of the [125I]iodoNEF radiotracer as a novel tracer for brain imaging. High uptake of 8.61 ± 0.14 percent injected dose/g organ was observed in mice


2020 ◽  
pp. 1-4
Author(s):  
Marwa I. Ezzat ◽  
Salsabeel N. El Gendy ◽  
Ahmed S. Saad ◽  
Walied S. Abdo ◽  
Aly M. EL Sayed ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Samah A. Abdel-Haleem ◽  
Abeer Y. Ibrahim ◽  
Rasha F. Ismail ◽  
Nermeen M. Shaffie ◽  
S.F. Hendawy ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Ana Isabel Fraguas-Sánchez ◽  
Cristina Martín-Sabroso ◽  
Ana Isabel Torres-Suárez

Background: The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. Objectives: This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. Conclusion: The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (09) ◽  
pp. 67-74
Author(s):  
Gana Manjusha Kondepudi ◽  
Battu Ganga Rao ◽  
P Balakrishnaiah

The main aim of this study was to screen the selected fruit peel extracts and their polyherbal mixture (PHM) for hepatoprotective activity. Male wistar albino rats (180-200 g), divided into 12 groups after induction of hepatotoxicity, were treated with selected fruit peel extracts and PHM and at the end of 14th day blood and liver samples were collected and analysed. The aqueous peel extract of Malus pumila was a better hepatoprotective among the selected peel extracts. The activities might be due to the conditioning of hepatocytes by protecting the integrity of the membrane from CCl4 induced leakage of serum markers into circulation. All the selected plant extracts and PHM were shown to revert back the liver enzymes to the normal values in diseased rats in a dose dependent manner. In conclusion, the selected fruit peel extracts and poly herbal mixture can be a potent hepatoprotective agent due to their antioxidant and anti-inflammatory actions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I-Hong Shih ◽  
Fan-Lin Kong ◽  
Mohammad S. Ali ◽  
Yinhan Zhang ◽  
Dong-Fang Yu ◽  
...  

Radiolabeled tyrosine analogs enter cancer cells via upregulated amino acid transporter system and have been shown to be superior to18F-fluoro-2-deoxy-D-glucose (18F-FDG) in differential diagnosis in cancers. In this study, we synthesized O-[3-19F-fluoropropyl]-α-methyl tyrosine (19F-FPAMT) and used manual and automated methods to synthesize O-[3-18F-fluoropropyl]-α-methyl tyrosine (18F-FPAMT) in three steps: nucleophilic substitution, deprotection of butoxycarbonyl, and deesterification. Manual and automated synthesis methods produced18F-FPAMT with a radiochemical purity >96%. The decay-corrected yield of18F-FPAMT by manual synthesis was 34% at end-of-synthesis (88 min). The decay-corrected yield of18F-FPAMT by automated synthesis was 15% at end-of-synthesis (110 min).18F-FDG and18F-FPAMT were used forin vitroandin vivostudies to evaluate the feasibility of18F-FPAMT for imaging rat mesothelioma (IL-45).In vitrostudies comparing18F-FPAMT with18F-FDG revealed that18F-FDG had higher uptake than that of18F-FPAMT, and the uptake ratio of18F-FPAMT reached the plateau after being incubated for 60 min. Biodistribution studies revealed that the accumulation of18F-FPAMT in the heart, lungs, thyroid, spleen, and brain was significantly lower than that of18F-FDG. There was poor bone uptake in18F-FPAMT for up to 3 hrs suggesting itsin vivostability. The imaging studies showed good visualization of tumors with18F-FPAMT. Together, these results suggest that18F-FPAMT can be successfully synthesized and has great potential in mesothelioma imaging.


2018 ◽  
Vol 26 (1) ◽  
pp. 138-139 ◽  
Author(s):  
Teruki Shimizu ◽  
Masatsugu Miyashita ◽  
Atsuko Fujihara ◽  
Fumiya Hongo ◽  
Osamu Ukimura ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 237 ◽  
Author(s):  
Ana Castro-Balado ◽  
Cristina Mondelo-García ◽  
Miguel González-Barcia ◽  
Irene Zarra-Ferro ◽  
Francisco J Otero-Espinar ◽  
...  

Classical methodologies used in ocular pharmacokinetics studies have difficulties to obtain information about topical and intraocular distribution and clearance of drugs and formulations. This is associated with multiple factors related to ophthalmic physiology, as well as the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in molecular imaging techniques, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic drugs in its action site, leading to dosage optimisation. They can be used to study either topical or intraocular administration. With these techniques it is possible to obtain real-time visualisation, localisation, characterisation and quantification of the compounds after their administration, all in a reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the information provided when the techniques are combined. With the results obtained, it is possible to assume that molecular imaging techniques are postulated as a resource with great potential for the research and development of new drugs and ophthalmic delivery systems.


Sign in / Sign up

Export Citation Format

Share Document