A 3D geostatistical model of Upper Jurassic Kimmeridgian facies distribution in Cantarell oil field, Mexico

Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


2018 ◽  
Vol 785 ◽  
pp. 46-51
Author(s):  
Ivan Nesterov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Mikhail Zavatskij

Bottomhole formation zone processing (BFZP) is performed at all phases of oil field development to restore and improve the filtration-capacity properties of the bottomhole formation zone to improve the oil yield. The choice of the BFZP technology is made basing on the study of the reasons for low well yield with account for the collector properties of productive sediments and rheological characteristics of the formation fluids, as well as a special geologic-geophysical and development-hydrodynamic study for the assessment of the porosity and permeability properties of BFZ. The research objective is to develop the criteria and assess the conditions for the application of bottomhole formation zone processing technologies for the upper Jurassic formations. Analysis of the results of laboratory and industrial research allowed offering the most efficient technologies for the influence on the upper Jurassic deposits.


1973 ◽  
Vol 13 (1) ◽  
pp. 49 ◽  
Author(s):  
Keith Crank

The Barrow Island oil field, which was discovered by the drilling of Barrow 1 in 1964, was declared commercial in 1966. Since then 520 wells have been drilled in the development of this field which has resulted in 309 Windalia Sand oil producers (from about 2200 feet), eight Muderong Greensand oil wells (2800 feet), five Neocomian/Upper Jurassic gas and oil producers (6200 to 6700 feet), eight Barrow Group water source wells and 157 water injection wells.Production averages 41,200 barrels of oil per day, and 98% of this comes from the shallow Windalia Sand Member of Cretaceous (Aptian to Albian) age. These reserves are contained in a broad north-plunging nose truncated to the south by a major down-to-the-south fault. The anticline is thought to have been formed initially from a basement uplift during Late Triassic to Early Jurassic time. Subsequent periods of deposition, uplift and erosion have continued into the Tertiary and modified the structure to its present form. The known sedimentary section on Barrow Island ranges from Late Jurassic to Miocene.The Neocomian/Jurassic accumulations are small and irregular and are not thought to be commercial in themselves. The Muderong Greensand pool is also a limited, low permeability reservoir. Migration of hydrocarbons is thought to have occurred mainly in the Tertiary as major arching did not take place until very late in the Cretaceous or early in the Palaeocene.The Windalia Sand reservoir is a high porosity, low permeability sand which is found only on Barrow Island. One of the most unusual features of this reservoir is the presence of a perched gas cap. Apparently the entire sand was originally saturated with oil, and gas subsequently moved upstructure from the north, displacing it. This movement was probably obstructed by randomly-located permeability barriers.


2019 ◽  
Vol 2 (1) ◽  
pp. 141-148
Author(s):  
Dmitry Novikov ◽  
Anatoly Chernykh ◽  
Fedor Dultsev

The results of the analysis of rare earth elements distribution in groundwater of J1 reservoir of the Verkh-Tarka oil field are reported for the first time. It was established that groundwater with Cl Na composition are predominate, with a value of total mineralization from 24.7 up to 48.9 g/dm3. The content of REE ranges from 3.72 to 30.49 µg/dm3 with an average of 13.61 µg/dm3. The highest concentrations are observed (µg/dm3) in La (up to 20.8), Eu (up to 7.9), Gd (up to 1.8) and Dy (up to 0.65). The level of dissolved REE is determined by their distribution in the water-bearing sandstones. Migration of rare-earth elements is carried out in the form of free ions and hydroxide complexes.


2019 ◽  
Vol 2 (1) ◽  
pp. 87-94
Author(s):  
Vladimir Marinov ◽  
Alexander Alifirov ◽  
Alexander Kudamanov ◽  
Varvara Bumagina

The results of litho-bio-stratigraphic studies of Callovian and Upper Jurassic of the Em-Ega oil field (Western Siberia) are presented. The formation of sediments took place in the sea basin and had a pulsating character. Episodes of sediment accumulation were replaced by periods of a sharp shortage of terrigenous material. The main stages of the arrival of terrigenous material were Callovian, Middle and Late Oxfordian, Early Kimmeridgian and Middle and Late Volgian. In Early Oxfordian, Late Kimmeridgian, Early Volgian deposits did not accumulate.


2021 ◽  
Vol 71 ◽  
pp. 125-138
Author(s):  
Fawzi M.O. Albeyati ◽  
◽  
Rzger A. Abdula ◽  
Rushdy S. Othman ◽  

Thirty four cuttings samples from the Jurassic rock succession in well Balad-1 in the Balad Oil Field, Central Iraq have been collected. Using various organic geochemical techniques, the organic matter’s quantity, quality, maturity, and their source rock’s depositional setting were determined. The samples were evaluated to determine the amount of their organic matter content, type of organic matter, δ13C carbon isotopes abundance for both saturated and aromatic, and molecular properties. The results of organic geochemistry analysis show that Sargelu, Gotnia, and Chia Gara formations contain fair to decent amounts of organic matter. Naokelekan Formation encompasses fair to excellent organic matter, while Najmah Formation comprises very high to exceptional organic matter. The analyzed samples revealed the existence of kerogen types III and II/III mainly within oil window. Thermal maturity related biomarkers are in a good agreement with Rock-Eval parameters, but did not reach equilibrium phase. Source related biomarkers show that these rock units rich in organic matter were mainly deposited in an anoxic marine depositional setting which consists of carbonate influenced by terrestrial input.


Sign in / Sign up

Export Citation Format

Share Document