Embodied energy assessment of rammed earth construction in Pozuelo de Alarcón (Madrid, Spain)

2012 ◽  
pp. 497-502
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Giada Giuffrida ◽  
Maurizio Detommaso ◽  
Francesco Nocera ◽  
Rosa Caponetto

The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Jinsung Kim ◽  
Hyeonggil Choi ◽  
Hyeun-Min Rye ◽  
Keun-Byoung Yoon ◽  
Dong-Eun Lee

In this study, the performance evaluation was performed by adding a polymer aqueous (PA) solution as a new additive of the red clay binder for use in the rammed-earth construction method. The evaluation items were compressive strength, water erosion, shrinkage, crystal structure, and microstructure. As a result of the experiment, the binder was improved by efficiently bonding the silica particles by the polymerized polymer. It was confirmed that adding a PA solution to red clay enhances the compressive strength, which is further improved when 5 wt% poly(Acrylic acid(AA)-co-Acrylamide(AM)) is added to the PA solution. Microstructural analysis indicated that the addition of a PA solution facilitates effective bonding of the silica particles of red clay to form hydrogen bonding with poly(AA-co-AM) and encourages aggregate formation. Therefore, the study confirmed that PA solution can be applied to satisfy the performance requirements of the rammed-earth construction by improving the durability and strength of the binder.


2012 ◽  
Vol 36 ◽  
pp. 727-735 ◽  
Author(s):  
Nuno Cristelo ◽  
Stephanie Glendinning ◽  
Tiago Miranda ◽  
Daniel Oliveira ◽  
Rui Silva

The focus on sustainability is at its peak in the construction industries in the last couple of decades. That includes green constructions such as rammed earth construction. Due to media exposure and carbon emission, people are undeniably turning to green and sustainable buildings. Furthermore, there is an improper management pattern of solid waste management found in developing countries, such as open burning and dumping of solid wastes. In which paper waste is not handled in a good way. There arefew places in developing countries where developing countries follow proper management of solid waste. Paper waste is present in each city because people are using it for daily life. Paper waste has fibre in them and has cellulose content. These components of paper waste are suitable for compressive strength. It has a side effect that it increases water absorbability. The reason for this research work is to reduce paper waste and reduce cement content. This paper also aims to find the durability and strength properties of rammed earth construction.


2020 ◽  
Vol 12 (1) ◽  
pp. 351 ◽  
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Ehsan Sharifi ◽  
Ali Soltani

Residential buildings are responsible for a considerable portion of energy consumption and greenhouse gas emissions worldwide. Correspondingly, many attempts have been made across the world to minimize energy consumption in this sector via regulations and building codes. The focus of these regulations has mainly been on reducing operational energy use, whereas the impacts of buildings’ embodied energy are frequently excluded. In recent years, there has been a growing interest in analyzing the energy performance of buildings via a life cycle energy assessment (LCEA) approach. The increasing amount of research has however caused the issue of a variation in results presented by LCEA studies, in which apparently similar case studies exhibited different results. This paper aims to identify the main sources of variation in LCEA studies by critically analyzing 26 studies representing 86 cases in 12 countries. The findings indicate that the current trend of LCEA application in residential buildings suffers from significant inaccuracy accruing from incomplete definitions of the system boundary, in tandem with the lack of consensus on measurements of operational and embodied energies. The findings call for a comprehensive framework through which system boundary definition for calculations of embodied and operational energies can be standardized.


2012 ◽  
Vol 512-515 ◽  
pp. 2780-2787
Author(s):  
Tie Gang Zhou ◽  
Dao Qiang Peng ◽  
Jing Hua Cheng

The traditional rammed earth building refers theses structures which uses tools such as pestle or hammer etc to fill undisturbed soil materials after a simple processing by the method of compacting layer by layer. construction technology of the modern rammed earth mainly makes improvements in terms of rammed earth materials、ramming tools and construction technology which can effectively improve the durability and safety performance of rammed earth building. This article is focusing on how to select scientifically which one is the best rammed earth material and introducing improvement situation about construction technology of rammed earth wall, which combined with researching and practicing of pilot project, under the guidance of the International centre for research and application of earth construction.


Sign in / Sign up

Export Citation Format

Share Document