Solar hybrid air-conditioning design for buildings in hot and humid climates

Author(s):  
Seifennasr Sabek

Contrary to the conventional air conditioning systems, the liquid desiccant cooling (LDC) systems are considered efficient systems to control the indoor air conditions. In addition, the LDC technologies are more adequate for the hot and humid climates. In this paper, we present an analytical investigation at assessing the feasibility of a LDC technology under Mediterranean climate. The mathematical equations including the sensible and latent heat transfer equations in both air stream and desiccant solution are presented. The impacts of climatic and operating parameters on the supplied air qualities, moisture removal rate (MRR) and sensible heat ratio (SHR) are evaluated. As a consequence, this study provides a solution to investigate the feasibility of this type of air conditioning technologies under hot and humid climate.


2019 ◽  
pp. 16-31
Author(s):  
Jani DB

The solid desiccant based dehumidifier used in conjunction with the conventional HVAC combines the dehumidification of solid desiccant system and with the cooling capacity of the conventional air conditioning system. This hybrid cooling system provides thermal comfort to the occupants of the conditioned space. The hybrid systems main appeal lies in the fact that, it consumes much lesser high grade electrical energy as compared to the dedicated standalone traditional air conditioning systems. The electrical energy usage is possible still lower by use of primary energy sources for to supply the thermal energy needed for the desiccant regeneration. For this purpose freely available renewable solar energy or industrial waste heat can also be used for the regeneration heat source. Sometimes it is also possible to provide condenser waste heat for the part of desiccant reactivation heat supply may increase the overall performance of the system. It was also found that this cooling system with use of air to air waste heat recovery wheel performed better than without it in terms of dehumidification as well as cooling performance. The present study report important literature survey on the dehumidification potentials of desiccant integrated hybrid cooling system operating in hot and humid climates. Keywords: Hybrid air-conditioning; Rotary desiccant dehumidifier; Heat recovery wheel; Regeneration heat; Renewable solar energy; Waste heat


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Sign in / Sign up

Export Citation Format

Share Document