Specimen slenderness effect on compressive strength of Cement Stabilised Rammed Earth

2015 ◽  
pp. 173-176 ◽  
Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Jinsung Kim ◽  
Hyeonggil Choi ◽  
Hyeun-Min Rye ◽  
Keun-Byoung Yoon ◽  
Dong-Eun Lee

In this study, the performance evaluation was performed by adding a polymer aqueous (PA) solution as a new additive of the red clay binder for use in the rammed-earth construction method. The evaluation items were compressive strength, water erosion, shrinkage, crystal structure, and microstructure. As a result of the experiment, the binder was improved by efficiently bonding the silica particles by the polymerized polymer. It was confirmed that adding a PA solution to red clay enhances the compressive strength, which is further improved when 5 wt% poly(Acrylic acid(AA)-co-Acrylamide(AM)) is added to the PA solution. Microstructural analysis indicated that the addition of a PA solution facilitates effective bonding of the silica particles of red clay to form hydrogen bonding with poly(AA-co-AM) and encourages aggregate formation. Therefore, the study confirmed that PA solution can be applied to satisfy the performance requirements of the rammed-earth construction by improving the durability and strength of the binder.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Enrico Quagliarini ◽  
Gianluca Maracchini

Earth has been used as construction material since prehistoric times, and it is still utilized nowadays in both developed and developing countries. Heritage conservation purposes and its intrinsic environmental benefits have led researchers to investigate the mechanical behaviour of this material. However, while a lot of works concern with rammed earth, CEB, and adobe techniques, very few studies are directed towards cob, which is an alternative to the more diffused rammed earth and adobe in specific geographic conditions. Due to this lack, this paper presents an experimental program aimed at assessing the failure mode and the main mechanical properties of cob earth walls (compressive strength, Young’s modulus, and Poisson’s ratio) through monotonic axial compression tests. Results show that, if compared with CEB, adobe, and rammed earth, cob has the lowest compressive strength, the lowest modulus of elasticity, and Poisson’s ratio. Differences are also found by comparing results with those obtained for other cob techniques, underlining both the high regional variability of cob and the need of performing more research on this topic. A strong dependence of material properties on loading rate and water content seems to exist too. Finally, the ability of a common analytical method used for masonry structures (an FEM macromodelling with a total strain rotating crack model) to represent the mechanical behaviour of cob walls is showed.


2021 ◽  
Vol 152 ◽  
pp. 111681
Author(s):  
Keun-Byoung Yoon ◽  
Hyun Min Ryu ◽  
Gwan Hui Lee ◽  
Anantha Iyengar Gopalan ◽  
Gopalan Sai-anand ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 324 ◽  
Author(s):  
Piotr Narloch ◽  
Piotr Woyciechowski ◽  
Jakub Kotowski ◽  
Ireneusz Gawriuczenkow ◽  
Emilia Wójcik

Cemented stabilized rammed earth (CSRE) is a building material used to build load bearing walls from locally available soil. The article analyzes the influence of soil mineral composition on CSRE compressive strength. Compression tests of CSRE samples of various mineral compositions, but the same particle size distribution, water content, and cement content were conducted. Based on the compression strength results and analyzed SEM images, it was observed that even small changes in the mineral composition significantly affected the CSRE compressive strength. From the comparison of CSRE compressive strength result sets, one can draw general qualitative conclusions that montmorillonite lowered the compressive strength the most; beidellite also lowered it, but to a lesser extent. Kaolinite lightly increased the compressive strength.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1396 ◽  
Author(s):  
Hubert Anysz ◽  
Piotr Narloch

Cement stabilized rammed earth (CRSE) is a sustainable, low energy consuming construction technique which utilizes inorganic soil, usually taken directly from the construction site, with a small addition of Portland cement as a building material. This technology is gaining popularity in various regions of the world, however, there are no uniform standards for designing the composition of the CSRE mixture. The main goal of this article is to propose a complete algorithm for designing CSRE with the use of subsoil obtained from the construction site. The article’s authors propose the use of artificial neural networks (ANN) to determine the proper proportions of soil, cement, and water in a CSRE mixture that provides sufficient compressive strength. The secondary purpose of the paper (supporting the main goal) is to prove that artificial neural networks are suitable for designing CSRE mixtures. For this purpose, compressive strength was tested on several hundred CSRE samples, with different particle sizes, cement content and water additions. The input database was large enough to enable the artificial neural network to produce predictions of high accuracy. The developed algorithm allows us to determine, using relatively simple soil tests, the composition of the mixture ensuring compressive strength at a level that allows the use of this material in construction.


2015 ◽  
Vol 49 (9) ◽  
pp. 3945-3955 ◽  
Author(s):  
Binod Khadka ◽  
Manjip Shakya

Natural Sand, which is being used extensively for all types of construction activities, is getting scarce now and many researchers have been put to task of testing other materials like manufactured sand for their usability in civil works. Present study aims at using the locally available soil for producing earth blocks. The materials like Auto aerated clay waste, manufactured sand are used in different proportions to see the possibility as a replacement for natural sand. Both the materials were used in proportion range of 35-65% along with 8% cement as a stabilizing agent. The cube compressive strength test was performed on soaked samples after 7 days and 28 days. It has been concluded from the result that the manufactured sand is cheap alternative material to replace natural sand


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Q.-B. Bui ◽  
T.-T. Bui ◽  
R. El-Nabouch ◽  
D.-K. Thai

Rammed earth (RE) is a construction material which is manufactured by compacting soil by layers within a formwork to build a monolithic wall. RE material is the subject of numerous scientific researches during the last decade because of the significant heritage of RE buildings and the sustainable properties of this material: low embodied energy, substantial thermal inertia, and natural regulator of moisture. The seismic performance of RE buildings is an interesting topic which needs to be thoroughly investigated. This paper presents a numerical study which assesses the relevancy of a seismic reinforcement technique for RE walls by using two vertical steel rods installed at two extremities of the walls. The discrete element method (DEM) was used to model unreinforced and reinforced RE walls. These walls were first loaded with a vertical stress on the top to simulate the vertical loads and then submitted to a horizontal loading on the top to simulate the seismic action. Two current cases of RE buildings were investigated: one-storey and two-storey buildings. The results showed that the reinforcement technique enhanced the maximum horizontal force about 25% and 10%, respectively, for the cases of one- and two-storey buildings. Higher effectiveness of this reinforcement technique is expected for RE materials having higher compressive strength, for example, stabilized RE.


Sign in / Sign up

Export Citation Format

Share Document