scholarly journals Effect of Drug Loading Method on Drug Content and Drug Release from Calcium Pectinate Gel Beads

2010 ◽  
Vol 11 (3) ◽  
pp. 1315-1319 ◽  
Author(s):  
Pornsak Sriamornsak ◽  
Jurairat Nunthanid ◽  
Kamonrak Cheewatanakornkool ◽  
Somkamol Manchun
Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1607
Author(s):  
Kasitpong Thanawuth ◽  
Lalinthip Sutthapitaksakul ◽  
Srisuda Konthong ◽  
Supakij Suttiruengwong ◽  
Kampanart Huanbutta ◽  
...  

The purpose of this study was to investigate the impact of the drug loading method on drug release from 3D-printed tablets. Filaments comprising a poorly water-soluble model drug, indomethacin (IND), and a polymer, polyvinyl alcohol (PVA), were prepared by hot-melt extrusion (HME) and compared with IND-loaded filaments prepared with an impregnation (IMP) process. The 3D-printed tablets were fabricated using a fused deposition modeling 3D printer. The filaments and 3D printed tablets were evaluated for their physicochemical properties, swelling and matrix erosion behaviors, drug content, and drug release. Physicochemical investigations revealed no drug–excipient interaction or degradation. IND-loaded PVA filaments produced by IMP had a low drug content and a rapid drug release. Filaments produced by HME with a lower drug content released the drug faster than those with a higher drug content. The drug content and drug release of 3D-printed tablets containing IND were similar to those of the filament results. Particularly, drug release was faster in 3D-printed tablets produced with filaments with lower drug content (both by IMP and HME). The drug release of 3D-printed tablets produced from HME filaments with higher drug content was extended to 24 h due to a swelling-erosion process. This study confirmed that the drug loading method has a substantial influence on drug content, which in turn has a significant effect on drug release. The results suggest that increasing the drug content in filaments might delay drug release from 3D-printed tablets, which may be used for developing dosage forms suited for personalized medicine.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (02) ◽  
pp. 21-30
Author(s):  
V. V. Pande ◽  
◽  
V. M. Sanklecha ◽  
S. R Arote

The present study involved the design and development of extended release matrix pellets of azilsartan medoxomil with its solid dispersion (Azil SD). A solid dispersion of azilsartan medoxomil was prepared with a carrier, Hypromallose acetate succinate (Affinisol 716G) by solvent evaporation technique. Extended release matrix pellets were prepared from Azil SD using a combination of polycarbophil, HPMC K4M, MCC and guar gum. AzilSD and the pellets were evaluated for various physicochemical properties such as solubility, drug loading, drug content, surface morphology and swelling behaviourand analysis carried out using Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction. The solubility and dissolution rate of Azil SD was 5.71 and 2.07 times greater, respectively.The optimized batch was selected based on 100% cumulative drug release in 12 hours. Formulation Batch F6 showed 99.19% CDR in 12 hours and drug content 97.89 %. The mechanism of the drug release rate kinetics of the Batch F6 followed the Korsmeyer-Peppas. Thus it can be concluded that Affinisol 716G based solid dispersion mechanism, enhances the solubility and dissolution of azilsartan medoxomil by using polycarbophil and HPMC K4M, forming an effective carrier for developing extended release matrix pellets.


Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.


2012 ◽  
Vol 584 ◽  
pp. 460-464 ◽  
Author(s):  
M Gajendiran ◽  
S. Balasubramanian

. A series of biodegradable amphiphilic tri-block copolymers (PLGA–PEG–PLGA) have been derived from the diblock copolymer poly (lactic–co–glycolic acid (PLGA)) and polyethylene glycol (PEG). The mycobacterium tuberculosis (MTB) drug pyrazinamide (PZA) loaded polymer nanoparticles (NPs) have been prepared by probe-sonication followed by w/o/w double emulsification technique. The copolymers have been characterized by FTIR and 1HNMR spectroscopic techniques, TG-DTA analysis, GPC analysis and powder XRD pattern. The MTB drug loaded polymeric NPs have been characterized by FESEM, powder XRD, HRTEM and XPS analysis. The drug loading efficiency, drug content and in vitro drug release studies have been carried out by spectrophotometry. The drug loading efficiency and drug content of triblock copolymeric NPs were higher than these of diblock copolymeric microparticles (MPs). The in vitro drug release studies indicate that the NPs exhibit initial burst release followed by controlled release of PZA for longer durations. The drug release kinetics mechanism has been evaluated by zero order, first order, Korsemeyer-Peppas (KP) and Higuchi models.


2020 ◽  
Vol 26 (4) ◽  
pp. 406-413
Author(s):  
Aram dokht khatibi Khatibi ◽  
Zarrin Eshaghi ◽  
Hamid Mosaddeghi ◽  
Davoud Balarak

Background: This study reports on the development of a controlled-release isoniazid (INH) drug delivery system using poly-є-caprolactone (PCL) functionalized magnetite-nanoparticles (MNPs), as a theoretical potential tool for tuberculosis (TB) chemotherapy. Method: The magnetite Fe3O4 core was fabricated by the co-precipitation method and coated with PCL by emulsion polymerization. INH was loaded onto the PCL-MNP surface to shape an INH-PCL-MNP nanocomposite. Deposing the INH on the nanocomposite surface was demonstrated through the molecular dynamics simulations. To investigate the stability of the polymer, the root-mean-square deviation (RMSD) and the radius of gyration (Rg) were calculated. The composite was characterized by Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Mycobacterium tuberculosis was used to assess the antimicrobial activity of the nanoparticles. The drug loading efficiency, drug content, and in-vitro release behavior of the INH-PCL-MNPs were evaluated by UV–Vis spectrophotometry. Results: RMSD of PCL show that the structure of polymer after 40 ns is stable. INH molecules interested to spend more time close to the polymer. Rg of PCL indicated that PCL folded and radius of gyration changed near 1nm. The drug loading efficiency and drug content of the NPs were 720±46 mg/g and 69.3±3.8 (%), respectively. The compound showed a strong level of activity in-vitro. The amount of drug release at all times was above the minimum inhibitory concentration (MIC) (6 μg/ml). Conclusion: INH-PCL-MNP nanocomposite have been effectively used as a potential tool to treat TB infections and a magnetic drug carrier system.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Sign in / Sign up

Export Citation Format

Share Document