The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent

2016 ◽  
Vol 18 (5) ◽  
pp. 1605-1616 ◽  
Author(s):  
Gomaa F. El-Fawal ◽  
Abdelrahman M. Yassin ◽  
Nehal M. El-Deeb

Plant-based electrospun nanofibers are widely fabricated as wound dressing in recent years primarily due to the presence of bioactive compounds which can facilitate the wound healing effects. In this study, poly(vinyl alcohol) (PVA) fibre mats containing Aquilaria malaccensis leaf extract (ALEX) [5, 10 and 15 %(w/w)] were fabricated by electrospinning method as potential wound dressing material. The nanofibers were uniform, beadless and randomly oriented with average diameters ranged between 195.27 – 281.20 nm. The presence of ALEX in the PVA nanofibers were evaluated by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). The mechanical properties, swelling degree and weight loss of nanofiber mats were also determined. ALEX was rapidly released from the ALEX-loaded PVA nanofibers in the first 12 hours and increased gradually afterwards. The released rate of ALEX was dependent on the ALEX content in the PVA nanofibers. This result is also contributed by the swelling degree and porosity of the nanofibers where the results were found to be between 241.66 – 305.86% and 64.53 – 30.81%, respectively. Meanwhile, the tensile stress and maximum elongation at break for all electrospun nanofiber mats were in the range of 8.56 – 2.68 MPa and 205.94 – 166.31%, respectively. The nanofiber mats inhibited growth of Escherichia coli, Vibrio vulnificus, Bacillus subtilis and Staphylococcus aureus with zone of inhibition of 7.5 - 15.0 mm for gram positive bacteria and 6.1 - 11.7 mm for gram negative bacteria. ALEX-loaded PVA nanofibers also showed potent anti-inflammatory activity against lipoxygenase with percentage of inhibition between 80.887 – 86.977%. Taken together, the results of this study suggest that ALEX-loaded PVA nanofibers have the desired properties of bioactive wound dressing.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


2013 ◽  
Vol 24 (10) ◽  
pp. 2479-2487 ◽  
Author(s):  
Takayuki Takei ◽  
Hideki Nakahara ◽  
Sadao Tanaka ◽  
Hiroto Nishimata ◽  
Masahiro Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document