scholarly journals LyoPRONTO: an Open-Source Lyophilization Process Optimization Tool

2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Gayathri Shivkumar ◽  
Petr S. Kazarin ◽  
Andrew D. Strongrich ◽  
Alina A. Alexeenko

Abstract This work presents a new user-friendly lyophilization simulation and process optimization tool, freely available under the name LyoPRONTO. This tool comprises freezing and primary drying calculators, a design-space generator, and a primary drying optimizer. The freezing calculator performs 0D lumped capacitance modeling to predict the product temperature variation with time which shows reasonably good agreement with experimental measurements. The primary drying calculator performs 1D heat and mass transfer analysis in a vial and predicts the drying time with an average deviation of 3% from experiments. The calculator is also extended to generate a design space over a range of chamber pressures and shelf temperatures to predict the most optimal setpoints for operation. This optimal setpoint varies with time due to the continuously varying product resistance and is taken into account by the optimizer which provides varying chamber pressure and shelf temperature profiles as a function of time to minimize the primary drying time and thereby, the operational cost. The optimization results in 62% faster primary drying for 5% mannitol and 50% faster primary drying for 5% sucrose solutions when compared with typical cycle conditions. This optimization paves the way for the design of the next generation of lyophilizers which when coupled with accurate sensor networks and control systems can result in self-driving freeze dryers.

Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


2020 ◽  
pp. 49-52
Author(s):  
Trine Aabo Andersen

A new fast measuring method for process optimization of sucrose crystallization using image analysis based on high quality images and algorithms is introduced. With the mobile, non-invasive at-line system all steps of the sucrose crystallization can be measured to determine the crystal size distribution. The image analysis system is easy to operate and is as well an efficient laboratory solution with user-friendly and customized software. In comparison to sieve analysis, image analyses performed with the ParticleTech Solution have been proven to be reliable.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 57-62
Author(s):  
Alexios Papacharalampopoulos ◽  
Harry Bikas ◽  
Christos Michail ◽  
Panagiotis Stavropoulos

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3561
Author(s):  
Antti Uusitalo ◽  
Aki Grönman

The losses of supercritical CO2 radial turbines with design power scales of about 1 MW were investigated by using computational fluid dynamic simulations. The simulation results were compared with loss predictions from enthalpy loss correlations. The aim of the study was to investigate how the expansion losses are divided between the stator and rotor as well as to compare the loss predictions obtained with the different methods for turbine designs with varying specific speeds. It was observed that a reasonably good agreement between the 1D loss correlations and computational fluid dynamics results can be obtained by using a suitable set of loss correlations. The use of different passage loss models led to high deviations in the predicted rotor losses, especially with turbine designs having the highest or lowest specific speeds. The best agreement in respect to CFD results with the average deviation of less than 10% was found when using the CETI passage loss model. In addition, the other investigated passage loss models provided relatively good agreement for some of the analyzed turbine designs, but the deviations were higher when considering the full specific speed range that was investigated. The stator loss analysis revealed that despite some differences in the predicted losses between the methods, a similar trend in the development of the losses was observed as the turbine specific speed was changed.


2001 ◽  
Author(s):  
Thomas DeMurry ◽  
Yanying Wang

Abstract The primary objectives of this study are (1) to validate the hardware design and control methodologies for preserving the thermo-mechanical integrity of a launch clutch emulating a torque converter and (2) to develop a simple, control oriented clutch-temperature model that may act as a virtual thermocouple in the processor of an automobile for real-time clutch-temperature predictions. In a dynamometer test cell, a Ford CD4E transaxle is instrumented with a thermocouple-based telemetry system to investigate clutch thermal characteristics during engagements, neutral idle, single and repeated launching, torsional isolation, and hill holding. A nonlinear, SIMULINK™-based model for estimating temperature is developed. The results from the simulations are in good agreement with the experimental data.


Author(s):  
V. P. Ustinov ◽  
E. L. Baranova ◽  
K. N. Visheratin ◽  
M. I. Grachev ◽  
A. V. Kalsin

The results of systematic (2003–2017) measurements of the total content and the volume mixing ratio of CO at Novolazarevskaya station with a spectrometer with a resolution of 0.2 cm– 1 are presented. The inverse problem of determining the total CO content, as well as interfering gases (H2O and N2O), was solved using the SFIT4 software package. Data analysis showed that over the measurement period the average total CO content at Novolazarevskaya amounted to (8 ± 2) 1017 molec/cm2, and the average volume mixing ratio amounted to (37 ± 8) ppb. The obtained data are compared with variations in the total content of CO in Arrival-Heights station, with MOPITT satellite data, as well as with surface values of CO concentration at Syova station. The maximum values of CO are observed in September, the minimum — in January–February. For all the considered series, the trends are insignificant, while there are periods of increased CO content (2010). In recent years (2014–2017) there is a tendency towards an increase in the minimum values of CO. For  Novolazarevskaya and  Arrival-Heights satellite data are characterized by the excess of over ground data, amounting to 19% and 14%, respectively, while there is a seasonal dependence of the deviation with the minimum in December–January. Surface measurements of the total CO content are in fairly good agreement at Novolazarevskaya and Arrival-Heights, and since 2010 the average deviation is 2.4%. The average value of the concentration of CO on Syova 51 ppb is higher than the average volume mixing ratio at Novolazarevskaya. According to the spectral, wavelet and composite analyzes, in all the considered series there are oscillations in the range of 6–45 months with closely coinciding periods and phases.


2018 ◽  
Vol 2 ◽  
pp. 12-20 ◽  
Author(s):  
Svitlana Popereshnyak ◽  
Anastasia Vecherkovskaya

In the course of the study, the activity of Ukrainian enterprises was analyzed. It was revealed that the main aspects that require increased attention, regardless of the industry, are staff management and order management. The activity of any enterprise consists of fulfilling orders and, as a consequence, satisfying customers. It is proposed to develop an automated system that will enable to keep records of orders, namely: the time of order receipt, the number of products, the urgency, the necessary material and time resources, the priority of the order, the executor, the predicted and actual time of the order. This system will help to organize the work of staff, namely: to optimize the working hours of employees due to the dynamic scheduling of the task list; to introduce responsibility for an order that is tied to a specific employee, to keep records of shifts and working hours, automatically form a payroll with due account of worked shifts/hours. The work designed an automated system for managing orders and staff at middle-class enterprises. The requirements for this system are defined and two types of architecture are proposed. For a better understanding of the design phase of the automated system, a class diagram, activity diagram and interaction diagrams are presented. In the process of research, the end product was created with a user-friendly and intuitive user interface that maximally satisfies all the requirements that have been defined for this system. For today the system works in a test mode at the enterprise of Ukraine. The introduction of the system to the filter element manufacturing company allowed to improve the interaction with customers by 40 % due to faster fulfillment of orders; 80 % facilitate the work of managers to track and control the execution of orders; and also, by 20% increase the efficiency of the staff department. What on the whole positively affected the work of the enterprise as a whole.


2020 ◽  
Vol 5 ◽  
pp. 80-90
Author(s):  
Ugur Ulusoy

Shape of particles made by grinding is one of the important measures for determining the utilizations of industrial minerals namely barite, calcite, and talc particles, particularly at production (like coating pigments, paints, rubber and paper) and processing stages (beneficiation by flotation). Therefore, measurement of particle characteristics is a critical issue in the development and control of industrial mineral products in most of the industries for some demanding applications. Ball and rod mills are commonly used as conventional grinding mills to produce a controlled grind size for the flotation circuit in the beneficiation of industrial minerals. Dynamic Image Analysis (DIA) offers reproducible results of a huge number of particles for some industrial minerals namely, barite [1], calcite [2] and talc [3] particles, whose shapes are crucial for some industries utilized as fillers. Thus, this review is about the comparison of shape values in terms of circularity (C) and bounding rectangle aspect ratio (BRAR) determined by the real time DIA. It was found that the shape results of the previous studies for the same samples by SEM measurement [4] were in good agreement with DIA results. It was concluded that the more rounded particles were encountered in the rod milled products for calcite and barite minerals. On the other hand, the more elongated particles were found in the ball milled products for talc mineral. It was attributed to the material type since the same mills were used for all tests. Hence, DIA can be used as a useful tool, which is easy, fast and highly accurate to control the particle shape distributions whether the required powder is fit for use


Sign in / Sign up

Export Citation Format

Share Document