Mutation of SGK3, a Novel Regulator of Renal Phosphate Transport, Causes Autosomal Dominant Hypophosphatemic Rickets

2019 ◽  
Vol 105 (6) ◽  
pp. 1840-1850 ◽  
Author(s):  
Ayşe Nurcan Cebeci ◽  
Minjing Zou ◽  
Huda A BinEssa ◽  
Ali S Alzahrani ◽  
Roua A Al-Rijjal ◽  
...  

Abstract Context Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3. Objective A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients. Design Patients and their family members were initially analyzed for PHEX and FGF23 mutations using polymerase chain reaction sequencing and copy number analysis. Exome sequencing was subsequently performed to identify novel candidate genes. Results PHEX and FGF23 mutations were not detected in the patients. No copy number variation was observed in the genome using CytoScan HD array analysis. Mutations in DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3 were also not found by exome sequencing. A novel c.979–96 T>A mutation in the SGK3 gene was found to be strictly segregated in a heterozygous pattern in patients and was not present in normal family members. The mutation is located 1 bp downstream of a highly conserved adenosine branch point, resulted in exon 13 skipping and in-frame deletion of 29 amino acids, which is part of the protein kinase domain and contains a Thr-320 phosphorylation site that is required for its activation. Protein tertiary structure modelling showed significant structural change in the protein kinase domain following the deletion. Conclusions The c.979–96 T>A splice mutation in the SGK3 gene causes exon 13 skipping and deletion of 29 amino acids in the protein kinase domain. The SGK3 mutation may cause autosomal dominant HR.

2014 ◽  
Vol 10 (3) ◽  
pp. 421-436 ◽  
Author(s):  
C. George Priya Doss ◽  
B. Rajith ◽  
Chiranjib Chakraboty ◽  
V. Balaji ◽  
R. Magesh ◽  
...  

1977 ◽  
Vol 162 (2) ◽  
pp. 411-421 ◽  
Author(s):  
S J Yeaman ◽  
P Cohen ◽  
D C Watson ◽  
G H Dixon

The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.


2005 ◽  
pp. 181-209 ◽  
Author(s):  
Arvin C. Dar ◽  
Leanne E. Wybenga-Groot ◽  
Frank Sicheri

2017 ◽  
Vol 55 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Mark J Hamilton ◽  
Richard C Caswell ◽  
Natalie Canham ◽  
Trevor Cole ◽  
Helen V Firth ◽  
...  

IntroductionRecent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations.MethodsPatients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause.ResultsOur cohort comprised 16 individuals aged 4–16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898–1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain.ConclusionsThese patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


2004 ◽  
Vol 24 (7) ◽  
pp. 2986-2997 ◽  
Author(s):  
Gareth J. Browne ◽  
Christopher G. Proud

ABSTRACT Eukaryotic elongation factor 2 (eEF2) kinase is an unusual calcium- and calmodulin-dependent protein kinase that is regulated by insulin through the rapamycin-sensitive mTOR pathway. Here we show that insulin decreases the ability of eEF2 kinase to bind calmodulin in a rapamycin-sensitive manner. We identify a novel phosphorylation site in eEF2 kinase (Ser78) that is located immediately next to its calmodulin-binding motif. Phosphorylation of this site is increased by insulin in a rapamycin-sensitive fashion. Regulation of the phosphorylation of Ser78 also requires amino acids and the protein kinase phosphoinositide-dependent kinase 1. Mutation of this site to alanine strongly attenuates the effects of insulin and rapamycin both on the binding of calmodulin to eEF2 kinase and on eEF2 kinase activity. Phosphorylation of Ser78 is thus likely to link insulin and mTOR signaling to the control of eEF2 phosphorylation and chain elongation. This site is not a target for known kinases in the mTOR pathway, e.g., the S6 kinases, implying that it is phosphorylated by a novel mTOR-linked protein kinase that serves to couple hormones and amino acids to the control of translation elongation. eEF2 kinase is thus a target for mTOR signaling independently of previously known downstream components of the pathway.


2019 ◽  
Vol 116 (43) ◽  
pp. 21508-21513 ◽  
Author(s):  
Lindsey N. Young ◽  
Felix Goerdeler ◽  
James H. Hurley

Autophagy induction by starvation and stress involves the enzymatic activation of the class III phosphatidylinositol (PI) 3-kinase complex I (PI3KC3-C1). The inactive basal state of PI3KC3-C1 is maintained by inhibitory contacts between the VPS15 protein kinase and VPS34 lipid kinase domains that restrict the conformation of the VPS34 activation loop. Here, the proautophagic MIT domain-containing protein NRBF2 was used to map the structural changes leading to activation. Cryoelectron microscopy was used to visualize a 2-step PI3KC3-C1 activation pathway driven by NRFB2 MIT domain binding. Binding of a single NRBF2 MIT domain bends the helical solenoid of the VPS15 scaffold, displaces the protein kinase domain of VPS15, and releases the VPS34 kinase domain from the inhibited conformation. Binding of a second MIT stabilizes the VPS34 lipid kinase domain in an active conformation that has an unrestricted activation loop and is poised for access to membranes.


2004 ◽  
Vol 15 (4) ◽  
pp. 1785-1792 ◽  
Author(s):  
Paul Lee ◽  
Arsalan Shabbir ◽  
Christopher Cardozo ◽  
Avrom J. Caplan

Hsp90 functions in association with several cochaperones for folding of protein kinases and transcription factors, although the relative contribution of each to the overall reaction is unknown. We assayed the role of nine different cochaperones in the activation of Ste11, a Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase. Studies on signaling via this protein kinase pathway was measured by α-factor-stimulated induction of FIG1 or lacZ, and repression of HHF1. Several cochaperone mutants tested had reduced FIG1 induction or HHF1 repression, although to differing extents. The greatest defects were in cpr7Δ, sse1Δ, and ydj1Δ mutants. Assays of Ste11 kinase activity revealed a pattern of defects in the cochaperone mutant strains that were similar to the gene expression studies. Overexpression of CDC37, a chaperone required for protein kinase folding, suppressed defects the sti1Δ mutant back to wild-type levels. CDC37 overexpression also restored stable Hsp90 binding to the Ste11 protein kinase domain in the sti1Δ mutant strain. These data suggest that Cdc37 and Sti1 have functional overlap in stabilizing Hsp90:client complexes. Finally, we show that Cns1 functions in MAP kinase signaling in association with Cpr7.


Sign in / Sign up

Export Citation Format

Share Document