scholarly journals Enhanced Fatty Acid Flux Triggered by Adiponectin Overexpression

Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Shoba Shetty ◽  
Maria A. Ramos-Roman ◽  
You-Ree Cho ◽  
Jonathan Brown ◽  
Jorge Plutzky ◽  
...  

Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P < 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 831 ◽  
Author(s):  
Virag Vas ◽  
Tamás Háhner ◽  
Gyöngyi Kudlik ◽  
Dávid Ernszt ◽  
Krisztián Kvell ◽  
...  

Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.


2020 ◽  
Vol 12 (2) ◽  
pp. 85-101
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Obesity has been decades become a highly interest study, accompanied by the realization that adipose tissue (AT) plays a major role in the regulation of metabolic function.CONTENT: In past few years, adipocytes classification, development, and differentiation has been significant changes. The white adipose tissue (WAT) can transform to a phenotype like brown adipose (BAT) type and function. Exercise and cold induction were the most common factor for fat browning; however batokines such as fibroblast growth factor (FGF)-21, interleukin (IL)-6, Slit homolog 2 protein (SLIT2)-C, and Meteorin-like protein (METRNL) perform a beneficial browning action by increasing peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α protein levels, a key factor to stimulate mitochondrial biogenesis and uncoupling Protein 1 (UCP1) transcription, thus change the WAT phenotype into beige.SUMMARY: AT recently known as a complex organ, not only bearing a storage function but as well as the master regulator of energy balance and nutritional homeostasis; brown and beige fat express constitutively high levels of thermogenic genes and raise our expectation on new strategies for fighting obesity and metabolic disorders.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, inflammation, IR, metabolic disease


2018 ◽  
Vol 61 (3) ◽  
pp. 115-126 ◽  
Author(s):  
Jessica A Deis ◽  
Hong Guo ◽  
Yingjie Wu ◽  
Chengyu Liu ◽  
David A Bernlohr ◽  
...  

Lipocalin-2 (LCN2) has been previously characterized as an adipokine regulating thermogenic activation of brown adipose tissue and retinoic acid (RA)-induced thermogenesis in mice. The objective of this study was to explore the role and mechanism for LCN2 in the recruitment and retinoic acid-induced activation of brown-like or ‘beige’ adipocytes. We found LCN2 deficiency reduces key markers of thermogenesis including uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in inguinal white adipose tissue (iWAT) and inguinal adipocytes derived from Lcn2 −/− mice. Lcn2 −/− inguinal adipocytes have attenuated insulin-induced upregulation of thermogenic gene expression and p38 mitogen-activated protein kinase (p38MAPK) signaling pathway activation. This is accompanied by a lower basal and maximal oxidative capacity in Lcn2 −/− inguinal adipocytes, indicating mitochondrial dysfunction. Recombinant Lcn2 was able to restore insulin-induced p38MAPK phosphorylation in both WT and Lcn2 −/− inguinal adipocytes. Rosiglitazone treatment during differentiation of Lcn2 −/− adipocytes is able to recruit beige adipocytes at a normal level, however, further activation of beige adipocytes by insulin and RA is impaired in the absence of LCN2. Further, the synergistic effect of insulin and RA on UCP1 and PGC-1α expression is markedly reduced in Lcn2 −/− inguinal adipocytes. Most intriguingly, LCN2 and the retinoic acid receptor-alpha (RAR-α) are concurrently translocated to the plasma membrane of adipocytes in response to insulin, and this insulin-induced RAR-α translocation is absent in adipocytes deficient in LCN2. Our data suggest a novel LCN2-mediated pathway by which RA and insulin synergistically regulates activation of beige adipocytes via a non-genomic pathway of RA action.


2020 ◽  
Author(s):  
Pardis Irandoost ◽  
Naimeh Mesri Alamdari ◽  
Atoosa Saidpour ◽  
Farzad Shidfar ◽  
Neda Roshanravan ◽  
...  

Abstract Background: Obesity is a public health problem across the world. Development of beige adipocytes in white adipose tissue (WAT) and activation of brown adipose tissue (BAT) can support obesity management. We aimed to investigate the effects of royal jelly (RJ) and tocotrienol-rich fraction (TRF) along with calorie restriction diet (CRD) on the genes involved in beige fat formation and BAT activation.Methods: Fifty 3-week-old male Wistar rats were fed high-fat diet (HFD) for 17 weeks. When obesity was induced, they were randomly divided into 5 groups (n=10/group): HFD, CRD, RJ+CRD, TRF+CRD, RJ+TRF+CRD for an additional 8 weeks. Finally, body weight was measured. Moreover, WAT and BAT were dissected for assessing the expression of major genes involved in adipose thermogenesis and histological changes evaluation. Results: At the end of the intervention, weight significantly decreased in RJ and RJ+TRF groups relative to the CRD group (p<0.05). RJ remarkably increased the expression of uncoupling protein 1 (UCP1) by 5.81 and 4.99 times more than CRD alone in WAT and BAT respectively (p<0.001). Expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), peroxisome proliferator-activated receptor-α (PPAR-α) and Sirtuin1 (SIRT1) was significantly increased in WAT and BAT of rats receiving RJ and RJ+TRF. Peroxisome proliferator-activated receptor-γ (PPAR-Ƴ) expression was not noticeably changed in assessed adipose tissues. Brown-like adipocytes in WAT and denser adipocytes in BAT were obvious in RJ and RJ+TRF groups. However, the effect of TRF on studied genes was not noticeable. Conclusion: RJ+CRD improved markers of adipose thermogenesis and induced anti-obesity effects more than CRD alone did. Furthermore, RJ remodeled adipose tissue and could be considered as a new therapeutic target.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1269-1277 ◽  
Author(s):  
James M. Way ◽  
W. Wallace Harrington ◽  
Kathleen K. Brown ◽  
William K. Gottschalk ◽  
Scott S. Sundseth ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle, PPARγ agonist treatment decreased the expression of pyruvate dehydrogenase kinase 4, which represses oxidative glucose metabolism, and also decreased the expression of genes involved in fatty acid transport and oxidation. These changes suggest a molecular basis for PPARγ-mediated increases in glucose utilization in muscle. In liver, PPARγ activation coordinately decreased the expression of genes involved in gluconeogenesis. We conclude from these studies that the antidiabetic actions of PPARγ agonists are probably the consequence of 1) their effects on FFA levels, and 2), their coordinate effects on gene expression in multiple insulin-sensitive tissues.


2012 ◽  
Vol 303 (3) ◽  
pp. E377-E388 ◽  
Author(s):  
Jonathan C. Jun ◽  
Mi-Kyung Shin ◽  
Qiaoling Yao ◽  
Shannon Bevans-Fonti ◽  
James Poole ◽  
...  

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH) during sleep and is associated with elevated triglycerides (TG). We previously demonstrated that mice exposed to chronic IH develop elevated TG. We now hypothesize that a single exposure to acute hypoxia also increases TG due to the stimulation of free fatty acid (FFA) mobilization from white adipose tissue (WAT), resulting in increased hepatic TG synthesis and secretion. Male C57BL6/J mice were exposed to FiO2 = 0.21, 0.17, 0.14, 0.10, or 0.07 for 6 h followed by assessment of plasma and liver TG, glucose, FFA, ketones, glycerol, and catecholamines. Hypoxia dose-dependently increased plasma TG, with levels peaking at FiO2 = 0.07. Hepatic TG levels also increased with hypoxia, peaking at FiO2 = 0.10. Plasma catecholamines also increased inversely with FiO2. Plasma ketones, glycerol, and FFA levels were more variable, with different degrees of hypoxia inducing WAT lipolysis and ketosis. FiO2 = 0.10 exposure stimulated WAT lipolysis but decreased the rate of hepatic TG secretion. This degree of hypoxia rapidly and reversibly delayed TG clearance while decreasing [3H]triolein-labeled Intralipid uptake in brown adipose tissue and WAT. Hypoxia decreased adipose tissue lipoprotein lipase (LPL) activity in brown adipose tissue and WAT. In addition, hypoxia decreased the transcription of LPL, peroxisome proliferator-activated receptor-γ, and fatty acid transporter CD36. We conclude that acute hypoxia increases plasma TG due to decreased tissue uptake, not increased hepatic TG secretion.


2012 ◽  
Vol 302 (2) ◽  
pp. C463-C472 ◽  
Author(s):  
Joo-Young Lee ◽  
Nobuyuki Takahashi ◽  
Midori Yasubuchi ◽  
Young-Il Kim ◽  
Hikari Hashizaki ◽  
...  

Uncoupling protein (UCP)-1 expressed in brown adipose tissue plays an important role in thermogenesis. Recent data suggest that brown-like adipocytes in white adipose tissue (WAT) and skeletal muscle play a crucial role in the regulation of body weight. Understanding of the mechanism underlying the increase in UCP-1 expression level in these organs should, therefore, provide an approach to managing obesity. The thyroid hormone (TH) has profound effects on mitochondrial biogenesis and promotes the mRNA expression of UCP in skeletal muscle and brown adipose tissue. However, the action of TH on the induction of brown-like adipocytes in WAT has not been elucidated. Thus we investigate whether TH could regulate UCP-1 expression in WAT using multipotent cells isolated from human adipose tissue. In this study, triiodothyronine (T3) treatment induced UCP-1 expression and mitochondrial biogenesis, accompanied by the induction of the CCAAT/enhancer binding protein, peroxisome proliferator-activated receptor-γ coactivator-1α, and nuclear respiratory factor-1 in differentiated human multipotent adipose-derived stem cells. The effects of T3 on UCP-1 induction were dependent on TH receptor-β. Moreover, T3 treatment increased oxygen consumption rate. These findings indicate that T3 is an active modulator, which induces energy utilization in white adipocytes through the regulation of UCP-1 expression and mitochondrial biogenesis. Our findings provide evidence that T3 serves as a bipotential mediator of mitochondrial biogenesis.


2008 ◽  
Vol 28 (7) ◽  
pp. 2187-2200 ◽  
Author(s):  
Haibo Wang ◽  
Yuan Zhang ◽  
Einav Yehuda-Shnaidman ◽  
Alexander V. Medvedev ◽  
Naresh Kumar ◽  
...  

ABSTRACT The adipocyte integrates crucial information about metabolic needs in order to balance energy intake, storage, and expenditure. Whereas white adipose tissue stores energy, brown adipose tissue is a major site of energy dissipation through adaptive thermogenesis mediated by uncoupling protein 1 (UCP1) in mammals. In both white and brown adipose tissue, nuclear receptors and their coregulators, such as peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator 1α (PGC-1α), play key roles in regulating their development and metabolic functions. Here we show the unexpected role of liver X receptor α (LXRα) as a direct transcriptional inhibitor of β-adrenergic receptor-mediated, cyclic AMP-dependent Ucp1 gene expression through its binding to the critical enhancer region of the Ucp1 promoter. The mechanism of inhibition involves the differential recruitment of the corepressor RIP140 to an LXRα binding site that overlaps with the PPARγ/PGC-1α response element, resulting in the dismissal of PPARγ. The ability of LXRα to dampen energy expenditure in this way provides another mechanism for maintaining a balance between energy storage and utilization.


Sign in / Sign up

Export Citation Format

Share Document