scholarly journals High-Fat Diet Increases LH Pulse Frequency and Kisspeptin-Neurokinin B Expression in Puberty-Advanced Female Rats

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4422-4431 ◽  
Author(s):  
Xiao Feng Li ◽  
Yuan Shao Lin ◽  
James S. Kinsey-Jones ◽  
Kevin T. O'Byrne

To investigate whether the advancement of puberty in response to high-fat diet (HFD) results from a concomitant increase in LH pulse frequency and kisspeptin (Kiss1) and neurokinin B (NKB) signaling in the hypothalamus, blood samples were collected on postnatal day (pnd) 28, 32, or 36 for LH measurement and vaginal opening monitored as a marker of puberty in female rats fed with HFD or standard chow from weaning. Quantitative RT-PCR was used to determine Kiss1 and kisspeptin receptor (Kiss1r) mRNA levels in brain punches of the medial preoptic area and the arcuate nucleus (ARC), and NKB and NKB receptor (NK3R) mRNA levels in the ARC. There was a gradual increase in LH pulse frequency from pnd 28, reaching significance by pnd 36 in control diet-fed rats. The advancement of puberty by approximately 6 d (average pnd 34) in rats fed HFD was associated with an earlier onset of the higher LH pulse frequency that was already extant on pnd 28. The increased levels of expression of Kiss1 in the medial preoptic area and ARC, and NKB in the ARC, associated with pubertal onset were similarly advanced in HFD-fed rats. These data suggest that the earlier accelerated GnRH pulse generator frequency and advanced puberty with obesogenic diets might be associated with premature up-regulation of kisspeptin and NKB signaling in the hypothalamus of the female rat.

Endocrinology ◽  
2012 ◽  
Vol 153 (10) ◽  
pp. 4894-4904 ◽  
Author(s):  
P. Grachev ◽  
X. F. Li ◽  
J. S. Kinsey-Jones ◽  
A. L. di Domenico ◽  
R. P. Millar ◽  
...  

Abstract Neurokinin B (NKB) and its receptor (NK3R) are coexpressed with kisspeptin, Dynorphin A (Dyn), and their receptors [G-protein-coupled receptor-54 (GPR54)] and κ-opioid receptor (KOR), respectively] within kisspeptin/NKB/Dyn (KNDy) neurons in the hypothalamic arcuate nucleus (ARC), the proposed site of the GnRH pulse generator. Much previous research has employed intracerebroventricular (icv) administration of KNDy agonists and antagonists to address the functions of KNDy neurons. We performed a series of in vivo neuropharmacological experiments aiming to determine the role of NKB/NK3R signaling in modulating the GnRH pulse generator and elucidate the interaction between KNDy neuropeptide signaling systems, targeting our interventions to ARC KNDy neurons. First, we investigated the effect of intra-ARC administration of the selective NK3R agonist, senktide, on pulsatile LH secretion using a frequent automated serial sampling method to obtain blood samples from freely moving ovariectomized 17β-estradiol-replaced rats. Our results show that senktide suppresses LH pulses in a dose-dependent manner. Intra-ARC administration of U50488, a selective KOR agonist, also caused a dose-dependent, albeit more modest, decrease in LH pulse frequency. Thus we tested the hypothesis that Dyn/KOR signaling localized to the ARC mediates the senktide-induced suppression of the LH pulse by profiling pulsatile LH secretion in response to senktide in rats pretreated with nor-binaltorphimine, a selective KOR antagonist. We show that nor-binaltorphimine blocks the senktide-induced suppression of pulsatile LH secretion but does not affect LH pulse frequency per se. In order to address the effects of acute activation of ARC NK3R, we quantified (using quantitative RT-PCR) changes in mRNA levels of KNDy-associated genes in hypothalamic micropunches following intra-ARC administration of senktide. Senktide down-regulated expression of genes encoding GnRH and GPR54 (GNRH1 and Kiss1r, respectively), but did not affect the expression of Kiss1 (which encodes kisspeptin). We conclude that NKB suppresses the GnRH pulse generator in a KOR-dependent fashion and regulates gene expression in GnRH neurons.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Shiori Minabe ◽  
Kinuyo Iwata ◽  
Youki Watanabe ◽  
Hitoshi Ozawa

Abstract Female obesity is associated with menstrual dysfunction leading to anovulation and infertility. It has recently been reported obesity-induced infertility is involved in the dysfunction of a kisspeptin neuron, a key player in reproduction via direct stimulation of gonadotropin releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. Previous studies reported that obesity due to high-fat diet (HFD) for 8 months induced a disruption in estrous cyclicity, caused by a decrease in Kiss1 (coding kisspeptin) expression in the hypothalamic arcuate nucleus (ARC) in female rodents. Here we showed the effects of shorter-term (4 months) HFD on pulsatile LH secretion and hypothalamic Kiss1 expression to show pathogenic mechanism underlying obesity-induced infertility. Female Wistar-Imamichi strain rats (7 weeks old) fed on either a standard diet (10% calories from fat) or a high-fat diet (45% calories from fat) for 4 months. Estrous cyclicity and body weight were monitored regularly. All animals were implanted with a jugular catheter and collected blood samples to analyze pulsatile LH secretion, after a week of the ovariectomy with low-dose replacement estradiol to negate influence of changes in ovarian steroid levels and mimic diestrous levels of plasma estrogen. On the next day of the blood sampling, rats were perfused with 0.05 M PBS followed by 4% paraformaldehyde and their brains were collected for in situ hybridization of Kiss1 and Gnrh1. The HFD-fed rats showed progressive increases in body weight, along with hyperphagia and adipose tissue accumulation, compared with control animals. Fifty-eight percent of the HFD-fed rats exhibited irregular estrous cycles, whereas remaining HFD-fed rats showed regular cycles. Two out of 7 rats showing HFD-induced irregular estrous cycles exhibited profound suppression of the LH pulse frequency and the number of Kiss1-expressing cells in the ARC, whereas remaining HFD-fed rats showed normal LH pulses and ARC Kiss1 expressions. The number of Kiss1-expressing cells in the ARC had close positive correlation with LH pulse frequency (R2=0.6872, P<0.001) in both groups. Additionally, the number of Kiss1- or Gnrh1-expressing cells in the anteroventral periventricular nucleus or the preoptic area, were comparable between groups. Taken together, our finding reveals the possibility that irregular menstruation was also induced by changes in the kisspeptin-GnRH independent pathway during the incipient stage of obese infertility.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A537-A537
Author(s):  
Shiori Minabe ◽  
Kinuyo Iwata ◽  
Hitoshi Ozawa

Abstract Metabolic stress resulting from a nutrient excess causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to be key players in reproduction via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the sex differences in the effects of a high-fat diet (HFD) on KNDy-associated gene expression in the ARC to determine the pathogenic mechanism underlying obesity-induced infertility. Wistar-Imamichi strain male and female rats (7 weeks of age) were fed either a standard diet (10% calories from fat) or high-fat diet (45% calories from fat) for 4 months. In male rats, the HFD caused a significant suppression of Kiss1(encoding kisspeptin), Tac3(encoding neurokinin B), and Pdyn(encoding dynorphin A) gene expression in the ARC, resulting in a decrease in plasma luteinizing hormone (LH) levels. In female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, while the other rats showed regular cycles. LH pulses were found, and the numbers of ARC Kiss1-,Tac3-, and Pdyn-expressing cells were high in control animals and almost allHFD-fed female rats, but two out of 10 rats showed profound HFD-induced suppression of LH pulse frequency and reduction in these cells. No statistical differences in LH secretion or ARC KNDy gene expression were observed between HFD-fed and control female rats. Additionally, the number of Gnrh1-expressing cells in the preoptic area was comparable between the groups in both sexes. Our findings revealed that HFD-fed male rats showed KNDy-dependent infertility, while irregular menstruation was mainly induced by KNDy-independent pathways during the incipient stage of obese infertility in female rats. Taken together, hypothalamic kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


2018 ◽  
Vol 315 (4) ◽  
pp. E694-E704 ◽  
Author(s):  
Emelie M. Gårdebjer ◽  
James S. M. Cuffe ◽  
Leigh C. Ward ◽  
Sarah Steane ◽  
Stephen T. Anderson ◽  
...  

The effects of maternal alcohol consumption around the time of conception on offspring are largely unknown and difficult to determine in a human population. This study utilized a rodent model to examine if periconceptional alcohol (PC:EtOH) consumption, alone or in combination with a postnatal high-fat diet (HFD), resulted in obesity and liver dysfunction. Sprague-Dawley rats were fed a control or an ethanol-containing [12.5% (vol/vol) EtOH] liquid diet from 4 days before mating until 4 days of gestation ( n = 12/group). A subset of offspring was fed a HFD between 3 and 8 mo of age. In males, PC:EtOH and HFD increased total body fat mass ( PPC:EtOH < 0.05, PHFD < 0.0001); in females, only HFD increased fat mass ( PHFD < 0.0001). PC:EtOH increased microvesicular liver steatosis in male, but not female, offspring. Plasma triglycerides, HDL, and cholesterol were increased in PC:EtOH-exposed males ( PPC:EtOH < 0.05), and LDL, cholesterol, and leptin (Lep) were increased in PC:EtOH-exposed females ( PPC:EtOH < 0.05). mRNA levels of Tnf-α and Lep in visceral adipose tissue were increased by PC:EtOH in both sexes ( PPC:EtOH < 0.05), and Il-6 mRNA was increased in males ( PPC:EtOH < 0.05). These findings were associated with reduced expression of microRNA-26a, a known regulator of IL-6 and TNF-α. Alcohol exposure around conception increases obesity risk, alters plasma lipid and leptin profiles, and induces liver steatosis in a sex-specific manner. These programmed phenotypes were similar to those caused by a postnatal HFD, particularly in male offspring. These results have implications for the health of offspring whose mothers consumed alcohol around the time of conception.


2019 ◽  
Vol 44 (7) ◽  
pp. 720-726 ◽  
Author(s):  
Renata Prado Vasconcelos ◽  
Milena Simões Peixoto ◽  
Keciany Alves de Oliveira ◽  
Andrea Claudia Freitas Ferreira ◽  
Andrelina Noronha Coelho-de-Souza ◽  
...  

The development of obesity-related metabolic disorders is more evident in male in comparison with female subjects, but the mechanisms are unknown. Several studies have shown that oxidative stress is involved in the pathophysiology of obesity, but the majority of these studies were performed with male animals. The aim of this study was to evaluate the sex-related differences in subcutaneous adipose tissue redox homeostasis and inflammation of rats chronically fed a high-fat diet. NADPH oxidase (NOX), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were evaluated in the subcutaneous adipose tissue (SC) of adult male and female rats fed either a standard chow (SCD) or a high-fat diet (HFD) for 11 weeks. NOX2 and NOX4 messenger RNA (mRNA) levels, total reduced thiols, interleukin (IL)-1β, tumor necrosis factor α (TNF-α), and IL-6 were also determined. Higher antioxidant enzyme activities and total reduced thiol levels were detected in SC of control male compared with female rats. Chronic HFD administration increased NOX activity and NOX2 and NOX4 mRNA levels and decreased SOD and GPx activities only in male animals. IL-1β, TNF-α, and IL-6 levels, as well as Adgre1, CD11b, and CD68 mRNA levels, were also higher in SC of males after HFD feeding. In SC of females, catalase activity was higher after HFD feeding. Taken together, our results show that redox homeostasis and inflammation of SC is sexually dimorphic. Furthermore, males show higher oxidative stress in SC after 11 weeks of HFD feeding owing to both increased reactive oxygen species (ROS) production through NOX2 and NOX4 and decreased ROS detoxification.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Gu ◽  
Shengjie Fan ◽  
Gaigai Liu ◽  
Lu Guo ◽  
Xiaobo Ding ◽  
...  

Wax gourd is a popular vegetable in East Asia. In traditional Chinese medicine, wax gourd peel is used to prevent and treat metabolic diseases such as hyperlipidemia, hyperglycemia, obesity, and cardiovascular disease. However, there is no experimental evidence to support these applications. Here, we examined the effect of the extract of wax gourd peel (EWGP) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, EWGP blocked body weight gain and lowered serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), liver TG and TC contents, and fasting blood glucose in mice fed with a high-fat diet. In the therapeutic study, we induced obesity in the mice and treated with EWGP for two weeks. We found that EWGP treatment reduced serum and liver triglyceride (TG) contents and fasting blood glucose and improved glucose tolerance in the mice. Reporter assay and gene expression analysis showed that EWGP could inhibit peroxisome proliferator-activated receptorγ(PPARγ) transactivities and could decrease mRNA levels of PPARγand its target genes. We also found that HMG-CoA reductase (HMGCR) was downregulated in the mouse liver by EWGP. Our data suggest that EWGP lowers hyperlipidemia of C57BL/6 mice induced by high-fat diet via the inhibition of PPARγand HMGCR signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


Sign in / Sign up

Export Citation Format

Share Document