scholarly journals Endogenous NO Upon Estradiol-17β Stimulation and NO Donor Differentially Regulate Mitochondrial S-Nitrosylation in Endothelial Cells

Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 3005-3016 ◽  
Author(s):  
Seiro Satohisa ◽  
Hong-hai Zhang ◽  
Lin Feng ◽  
Ying-ying Yang ◽  
Lan Huang ◽  
...  

Adduction of a nitric oxide (NO) moiety (NO•) to cysteines termed as S-nitrosylation (SNO) has emerged as a crucial mechanism for NO signaling crucial for mediating the vascular effects of estrogens. Mitochondrion is a known vascular risk factor; however, the effects of estrogens on mitochondrial SNO are incompletely understood. In this study we determined the effects of estradiol-17β (E2β) on mitochondrial protein SNO in primary human umbilical vein endothelial cells and compared the mitochondrial nitroso-proteomes in E2β- and a NO donor S-nitrosoglutathione (GSNO)-treated cells using a proteomics approach. Treatment with 10 nM E2β and 1 mM GSNO for 30 minutes significantly increased the levels of mitochondrial SNO-proteins. Subcellular localization of SNO-proteins showed mitochondria as the major cellular organelle for protein SNO in response to E2β and GSNO. E2β stimulated mitochondrial endothelial nitric oxide synthase (eNOS) phosphorylation and mitochondrial protein SNO that was enhanced by overexpression of mitochondrion or Golgi, but not membrane targeting eNOS constructs. We identified 11, 32, and 54 SNO-proteins in the mitochondria from the untreated, E2β-, and GSNO-treated human umbilical vein endothelial cells, respectively. Comparisons of the nitroso-proteomes revealed that common and different mitochondrial SNO-proteins were affected by endogenous NO on E2β stimulation and exogenous NO from donor. These SNO-proteins were associated with various mitochondrial functions, including energy and redox regulation, transport, iron homeostasis, translation, mitochondrial morphology, and apoptosis, etc. Collectively, we conclude that estrogens rapidly stimulate protein SNO in endothelial mitochondria via mitochondrial eNOS, providing a mechanism for mediating the vascular effects of estrogens.

Endocrinology ◽  
2010 ◽  
Vol 151 (8) ◽  
pp. 3874-3887 ◽  
Author(s):  
Hong-hai Zhang ◽  
Lin Feng ◽  
Itamar Livnat ◽  
Jeong-Kyu Hoh ◽  
Jae-Yoon Shim ◽  
...  

Covalent adduction of a nitrosyl group to cysteines [S-nitrosylation (S-NO)] is emerging as a key route for nitric oxide (NO) to directly modulate protein functions. Here, we studied the effects of estrogens on endothelial protein S-NO and analyzed the nitrosyl-proteomes by biotin/CyDye switch technique combined with two-dimensional fluorescence difference gel electrophoresis and identified nitrosoproteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Estradiol-17β (E2) rapidly stimulated protein S-NO in human umbilical vein endothelial cells, maximizing within 10- to 30-min post-E2 (10 nm) exposure. E2-BSA also rapidly stimulated protein S-NO. Both E2 and E2-BSA-induced protein S-NO was blocked by ICI 182,780 and N-nitro-l-arginine-methylester. Human umbilical vein endothelial cells expressed estrogen receptor (ER)α and ERβ; both seemed to be required for E2 stimulation of protein S-NO because: 1) neither ERα or ERβ agonist alone, but their combination, stimulated protein S-NO; and 2) either ERα or ERβ antagonist blocked E2-induced protein S-NO. Numerous nitrosoproteins (spots) were observed on two-dimensional fluorescence difference gel. One hundred spots of interest were picked up; 58 were identified and, of which 15 were novel nitrosoproteins, 28 were up-regulated, 11 were decreased, and the rest were unchanged by E2. Pathway analysis suggested that nitrosoproteins are involved in regulating various endothelial functions, including apoptosis, cell structure and metabolism, redox homeostasis, etc. Thus, estrogens stimulate dynamic endothelial protein S-NO via mechanisms linked to specific ERs possibly on the plasma membrane and endogenous NO. These findings signify a critical next step for the understanding of the biological targets of enhanced NO production by estrogens.


2002 ◽  
Vol 92 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Scott Earley ◽  
Leif D. Nelin ◽  
Louis G. Chicoine ◽  
Benjimen R. Walker

Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O2) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso- N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O2) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O2) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O2) exposure. ET-1 promoter activity after S-nitroso- N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.


2009 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Jin-Jer Chen ◽  
Cheng-Hsien Chen ◽  
Kar-Lok Wong

Background Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. Methods Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. Results The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. Conclusions The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.


Life Sciences ◽  
1994 ◽  
Vol 54 (13) ◽  
pp. PL221-PL227 ◽  
Author(s):  
Kenji Nakai ◽  
Chuichi Itoh ◽  
Kazuhiko Hotta ◽  
Tomonori Itoh ◽  
Masao Yoshizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document