scholarly journals Genetic Deletion of Esr1 in the Mouse Preoptic Area Disrupts the LH Surge and Estrous Cyclicity

Endocrinology ◽  
2019 ◽  
Vol 160 (8) ◽  
pp. 1821-1829 ◽  
Author(s):  
Robert Porteous ◽  
Allan E Herbison

Abstract Estrogen receptor α (ESR1) is critical for the generation of the preovulatory LH surge. Experiments in rodents have indicated a role for neurons located in the anteroventral periventricular area and preoptic periventricular nucleus [termed the rostral periventricular area of the third ventricle (RP3V)] in surge generation. In the current study, we aimed to examine whether ESR1 expressed by RP3V neurons was necessary for the LH surge. The estrous cycles of mice with estrogen receptor α (Esr1) exon 3 flanked by LoxP sites (Esr1 flox) and controls were monitored before and after bilateral stereotactic injection of adeno-associated virus encoding Cre recombinase into the RP3V. This resulted in 84% and 72% decreases in ESR1-immunoreactive cell numbers in the anteroventral periventricular area and preoptic periventricular nucleus, respectively, with no changes in the arcuate nucleus. Beginning three weeks after the adeno-associated virus injection, Esr1 flox mice began to show a loss of estrous cyclicity going, primarily, into constant estrus. Wild-type mice and Esr1 flox mice with injections outside the RP3V or unilateral ablations of ESR1 continued to exhibit normal estrous cycles. Mice were then gonadectomized and given an estradiol replacement regimen to generate the LH surge. This resulted in an absence of cFOS expression in GnRH neurons (1 ± 1% vs 28 ± 4% of GnRH neurons; P < 0.01) and markedly reduced LH surge levels (2.5 ± 0.6 vs 9.1 ± 1.0 ng/mL; P < 0.01) in Esr1 flox mice compared with controls. These results demonstrate that neurons expressing ESR1 within the RP3V are critical for the generation of the LH surge and estrous cyclicity in the mouse.

Author(s):  
Tamás Wilheim ◽  
Krisztina Nagy ◽  
Mahendravarman Mohanraj ◽  
Kamil Ziarniak ◽  
Masahiko Watanabe ◽  
...  

AbstractThe endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 193-203 ◽  
Author(s):  
X. Liu ◽  
R.S.E. Brown ◽  
A.E. Herbison ◽  
D.R. Grattan

In mammals, lactation is associated with a period of infertility characterized by the loss of pulsatile secretion of GnRH and cessation of ovulatory cycles. Despite the importance of lactational infertility in determining overall fecundity of a species, the mechanisms by which the suckling stimulus suppresses GnRH secretion remain unclear. Because kisspeptin neurons are critical for fertility, the aim of this study was to test the hypothesis that reduced kisspeptin expression might mediate the lactation-induced suppression of fertility, using mouse models. In the rostral periventricular area of the third ventricle (RP3V), a progressive decrease in RP3V Kiss1 mRNA levels was observed during pregnancy culminating in a 10-fold reduction during lactation compared with diestrous controls. This was associated with approximately 60% reduction in the numbers of kisspeptin-immunoreactive neurons in the RP3V detected during lactation. Similarly, in the arcuate nucleus there was also a significant decrease in Kiss1 mRNA levels during late pregnancy and midlactation, and a notable decrease in kisspeptin fiber density during lactation. The functional characteristics of the RP3V kisspeptin input to GnRH neurons were assessed using electrophysiological approaches in an acute brain slice preparation. Although endogenous RP3V kisspeptin neurons were found to activate GnRH neurons in diestrous mice, this was never observed during lactation. This did not result from an absence of kisspeptin receptors because GnRH neurons responded normally to 100 nM exogenous kisspeptin during lactation. The kisspeptin deficit in lactating mice was selective, because GnRH neurons responded normally to RP3V gamma aminobutryic acid inputs during lactation. These data demonstrate that a selective loss of RP3V kisspeptin inputs to GnRH neurons during lactation is the likely mechanism causing lactational anovulation in the mouse.


2006 ◽  
Vol 191 (1) ◽  
pp. 339-348 ◽  
Author(s):  
Atsushi Fukushima ◽  
Ping Yin ◽  
Maho Ishida ◽  
Nobuhiro Sugiyama ◽  
Jun Arita

During lactation, the suckling stimulus exerts profound influences on neuroendocrine regulation in nursing rats. We examined the acute effect of pup removal on the estrogen-induced surge of LH secretion in ovariectomized lactating rats. Lactating and nonlactating cyclic female rats were given an estradiol-containing capsule after ovariectomy, and blood samples were collected through an indwelling catheter for serum LH determinations. In lactating, freely suckled ovariectomized rats, estrogen treatment induced an afternoon LH surge with a magnitude and timing comparable to those seen in nonlactating rats. Removal of pups from the lactating rats at 0900, 1100, or 1300 h, but not at 1500 h, suppressed the estrogen-induced surge that normally occurs in the afternoon of the same day. The suppressive effect of pup removal at 0900 h was completely abolished when the pups were returned by 1400 h. In contrast, pup removal was ineffective in abolishing the stimulatory effect of progesterone on LH surges. Double immunohistochemical staining for gonadotropin-releasing hormone (GnRH) and c-Fos, a marker for neuronal activation, revealed a decrease, concomitantly with the suppression of LH surges, in the number of c-Fos-immunoreactive GnRH neurons in the preoptic regions of nonsuckled rats. An LH surge was restored in nonsuckled rats when 0.1 μg oxytocin was injected into the third ventricle three times at 1-h intervals during pup removal. These results suggest that the GnRH surge generator of lactating rats requires the suckling stimulus that is not involved in nonlactating cyclic female rats.


2000 ◽  
Vol 875 (1-2) ◽  
pp. 56-65 ◽  
Author(s):  
Eun-Joo Lee ◽  
Constance T Moore ◽  
Somaya Hosny ◽  
Adrian Centers ◽  
Lothar Jennes

Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3836-3846 ◽  
Author(s):  
D. A. Kelly ◽  
M. M. Varnum ◽  
A. A. Krentzel ◽  
S. Krug ◽  
N. G. Forger

The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and anteroventral periventricular nucleus of the hypothalamus (AVPV) are sexually dimorphic, hormone-sensitive forebrain regions. Here we report a profound sex difference in estrogen receptor-α (ERα) immunoreactivity (IR) in the BNSTp, with robust ERα IR in females and the near absence of labeling in males. This sex difference is due to the suppression of ERα IR by testicular hormones in adulthood: it was not present at birth and was not altered by neonatal treatment of females with estradiol; gonadectomy of adult males increased ERα IR to that of females, whereas gonadectomy of adult females had no effect. Treating gonadally intact males with an aromatase inhibitor partially feminized ERα IR in the BNSTp, suggesting that testicular suppression required aromatization. By contrast, in AVPV we found a modest sex difference in ERα IR that was relatively insensitive to steroid manipulations in adulthood. ERα IR in AVPV was, however, masculinized in females treated with estradiol at birth, suggesting that the sex difference is due to organizational effects of estrogens. The difference in ERα IR in the BNSTp of males and females appears to be at least in part due to greater expression of mRNA of the ERα gene (Esr1) in females. The sex difference in message is smaller than the difference in immunoreactivity, however, suggesting that posttranscriptional mechanisms also contribute to the pronounced suppression of ERα IR and presumably to functions mediated by ERα in the male BNSTp.


2010 ◽  
Vol 298 (1) ◽  
pp. E80-E88 ◽  
Author(s):  
Heather M. Dungan Lemko ◽  
Roxana Naderi ◽  
Valeriya Adjan ◽  
Lothar H. Jennes ◽  
Victor M. Navarro ◽  
...  

In female mammals, increased ovarian estradiol (E2) secretion triggers GnRH release from neurons in the basal forebrain, which drives LH secretion from the pituitary and subsequently induces ovulation. However, the neural circuits that activate this preovulatory GnRH/LH surge remain unidentified. Neurotensin is expressed in neurons of the anteroventral periventricular nucleus (AVPV), a region thought to be critical for generating the preovulatory GnRH/LH surge. E2 induces neurotensin ( Nts) gene expression in this region, and blockade of neurotensin signaling reduces the LH surge in the rat. We postulated that neurotensin signaling plays a similar role in generating the E2-induced GnRH/LH surge in mice. We used in situ hybridization (ISH) to determine whether E2 induces Nts expression in the mouse and found evidence to support this proposition. Next, we determined that the neurotensin receptor (Ntsr2) is present in many GnRH-expressing neurons. Since the kisspeptin gene ( Kiss1) is expressed in the AVPV and is responsive to E2, we predicted that some neurons in this region express both Kiss1 and Nts; however, by double-label ISH, we observed no coexpression of the two mRNAs. We also postulated that Nts mRNA expression would increase in parallel with the E2-induced LH surge and that the central (icv) administration of neurotensin would stimulate LH secretion and activation of GnRH neurons but found no evidence to support either of these hypotheses. Together, these findings suggest that, although neurotensin neurons in the AVPV are targets for regulation by E2, neurotensin does not appear to play a direct role in generating the GnRH/LH surge in the mouse.


Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1418-1427 ◽  
Author(s):  
Rachel Y. Cheong ◽  
Robert Porteous ◽  
Pierre Chambon ◽  
István Ábrahám ◽  
Allan E. Herbison

The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron–selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice.


Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Thibault Bahougne ◽  
Mathilda Kretz ◽  
Eleni Angelopoulou ◽  
Nathalie Jeandidier ◽  
Valérie Simonneaux

Abstract In female mammals, cycles in reproductive function depend both on the biological clock synchronized to the light/dark cycle and on a balance between the negative and positive feedbacks of estradiol, whose concentration varies during oocyte maturation. In women, studies report that chronodisruptive environments such as shiftwork may impair fertility and gestational success. The objective of this study was to explore the effects of shifted light/dark cycles on both the robustness of the estrous cycles and the timing of the preovulatory luteinizing hormone (LH) surge in female mice. When mice were exposed to a single 10-hour phase advance or 10-hour phase delay, the occurrence and timing of the LH surge and estrous cyclicity were recovered at the third estrous cycle. By contrast, when mice were exposed to chronic shifts (successive rotations of 10-hoursour phase advances for 3 days followed by 10-hour phase delays for 4 days), they exhibited a severely impaired reproductive activity. Most mice had no preovulatory LH surge at the beginning of the chronic shifts. Furthermore, the gestational success of mice exposed to chronic shifts was reduced, because the number of pups was 2 times lower in shifted than in control mice. In conclusion, this study reports that exposure of female mice to a single phase shift has minor reproductive effects, whereas exposure to chronically disrupted light/dark cycles markedly impairs the occurrence of the preovulatory LH surge, leading to reduced fertility.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2986-2995 ◽  
Author(s):  
Shel-Hwa Yeo ◽  
Allan E. Herbison

The location and characteristics of cells within the brain that suppress GnRH neuron activity to contribute to the estrogen-negative feedback mechanism are poorly understood. Using adeno-associated virus (AAV)-mediated Cre-LoxP recombination in estrogen receptor-α (ERα) floxed mice (ERαflox/flox), we aimed to examine the role of ERα-expressing neurons located in the arcuate nucleus (ARN) in the estrogen-negative feedback mechanism. Bilateral injection of AAV-Cre into the ARN of ERαflox/flox mice (n = 14) resulted in the time-dependent ablation of up to 99% of ERα-immunoreactive cell numbers throughout the rostrocaudal length of the ARN. These mice were all acyclic by 5 weeks after AAV-Cre injections with most mice in constant estrous. Control wild-type mice injected with AAV-Cre (n = 13) were normal. Body weight was not altered in ERαflox/flox mice. After ovariectomy, a significant increment in LH secretion was observed in all genotypes, although its magnitude was reduced in ERαflox/flox mice. Acute and chronic estrogen-negative feedback were assessed by administering 17β-estradiol to mice as a bolus (LH measured 3 h later) or SILASTIC brand capsule implant (LH measured 5 d later). This demonstrated that chronic estrogen feedback was absent in ERαflox/flox mice, whereas the acute feedback was normal. These results reveal a critical role for ERα-expressing cells within the ARN in both estrous cyclicity and the chronic estrogen negative feedback mechanism in female mice. This suggests that ARN cells provide a key indirect, transsynpatic route through which estradiol suppresses the activity of GnRH neurons.


Sign in / Sign up

Export Citation Format

Share Document