Thyroid Hormone Up-Regulates an Alzheimer Disease–Related Gene Seladin-1 at the Transcriptional Level

2011 ◽  
pp. OR30-3-OR30-3 ◽  
Author(s):  
Emi Ishida ◽  
Koshi Hashimoto ◽  
Atsushi Ozawa ◽  
Nobuyuki Shibusawa ◽  
Tetsurou Satoh ◽  
...  
2019 ◽  
Vol 119 ◽  
pp. S10
Author(s):  
A.C. Bretz ◽  
G. Streubel ◽  
U. Parnitzke ◽  
M. Borgmann ◽  
S. Hamm

iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

1993 ◽  
Vol 84 (1) ◽  
pp. 61-67 ◽  
Author(s):  
N. K. Green ◽  
M. D. Gammage ◽  
J. A. Franklyn ◽  
A. M. Heagerty ◽  
M. C. Sheppard

1. In order to investigate the molecular mechanisms determining the hypertrophic response of the ventricular myocardium to thyroid hormone administration, changes in left and right ventricular expression of the c-myc, c-fos and H-ras proto-oncogenes in response to treatment with 3,3′,5-tri-iodothyronine were defined. 2. Adult female Wistar rats were treated with daily subcutaneous injections of 3,3′,5-tri-iodothyronine (50 μg) for 1, 3, 7 or 14 days (n = 6 in each treatment group) and the results from 3,3′,5-tri-iodothyronine-treated animals were compared with those obtained from untreated controls (n = 6). Changes in the weight of the left and right ventricles in response to 3,3′,5-tri-iodothyronine treatment were measured; changes in expression of the c-myc, c-fos and H-ras proto-oncogenes were determined in parallel by measurement of specific messenger RNAs by Northern and dot hybridization, as well as changes in expression of β myosin heavy chain messenger RNA. 3. Treatment with 3,3′,5-tri-iodothyronine resulted in increases in both left and right ventricular weights after 3 days, an effect maintained up to 14 days. Despite an increase in left ventricular weight, levels of β myosin heavy chain, c-myc, c-fos and H-ras mRNAs in the left ventricle were unchanged; in contrast, an increase in right ventricular weight was associated with increased expression of β myosin heavy chain, c-myc and c-fos messenger RNAs. 4. These specific ventricular changes in gene expression, in the face of a hypertrophic response of both ventricles to 3,3′,5-tri-iodothyronine, suggest that the cardiac growth response to thyroid hormones reflects the well-documented secondary haemodynamic influences rather than direct gene regulatory actions of 3,3′,5-tri-iodothyronine at the transcriptional level on the genes studied. Changes in right ventricular proto-oncogene and β myosin heavy chain expression may in turn reflect an increase in right ventricular pressure load.


1993 ◽  
Vol 265 (4) ◽  
pp. G775-G782 ◽  
Author(s):  
R. A. Giannella ◽  
J. Orlowski ◽  
M. L. Jump ◽  
J. B. Lingrel

Expression of the Na(+)-K(+)-adenosinetriphosphatase (ATPase) gene family in rat intestinal epithelial cells was examined using RNA blot hybridization analyses. Rat intestinal epithelial cells express only the alpha 1- and beta 1-subunit mRNAs. A gradient in expression of alpha 1- and beta 1-subunit mRNA was seen along the villus-crypt unit in both jejunum and ileum, i.e., villus tip >> crypt cells. Regional differences in expression were observed along the intestine. alpha 1- and beta 1-subunit mRNA abundance was similar in jejunum, ileum, and colon while enzymatic activity was highest in the jejunum and lowest in the ileum. Administration of thyroid hormone to thyroidectomized rats increased the expression of alpha 1- and beta 1-subunit mRNAs in jejunum but not in colon. Hypothyroidism had no effect on subunit mRNA expression. The human intestinal cell line Caco-2 was also studied. These cells also expressed only the alpha 1- and beta 1-isoform mRNAs and demonstrated a developmental profile in both mRNA and enzymatic activity. Furthermore, in Caco-2 cells both alpha 1- and beta 1-mRNAs and Na(+)-K(+)-ATPase enzymatic activity were stimulated by thyroid hormone. Caco-2 cells transfected with 5' flanking regions of the human Na(+)-K(+)-ATPase beta 1-gene linked to the chloramphenicol acetyltransferase (CAT) reporter gene responded to 3,5,3'-triiodothyronine (T3) treatment with increased expression of CAT activity. This suggests that the 5' flanking region of the beta 1-gene contains a thyroid hormone response element and that T3 upregulation occurs at the transcriptional level.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document