scholarly journals Polycystic Ovary Syndrome Is Associated with Tissue-Specific Differences in Insulin Resistance

2009 ◽  
Vol 94 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Theodore P. Ciaraldi ◽  
Vanita Aroda ◽  
Sunder Mudaliar ◽  
R. Jeffrey Chang ◽  
Robert R. Henry

Abstract Objective: The potential differential contributions of skeletal muscle and adipose tissue to whole body insulin resistance were evaluated in subjects with polycystic ovary syndrome (PCOS). Research Design and Methods: Forty-two PCOS subjects and 15 body mass index-matched control subjects were studied. Insulin action was evaluated by the hyperinsulinemic/euglycemic clamp procedure. Isolated adipocytes and cultured muscle cells were analyzed for glucose transport activity; adipocytes, muscle tissue, and myotubes were analyzed for the expression and phosphorylation of insulin-signaling proteins. Results: Fifty-seven per cent of the PCOS subjects had impaired glucose tolerance and the lowest rate of maximal insulin-stimulated whole body glucose disposal compared to controls (P < 0.01). PCOS subjects with normal glucose tolerance had intermediate reduction in glucose disposal rate (P < 0.05 vs. both control and impaired glucose tolerance subjects). However, rates of maximal insulin-stimulated glucose transport (insulin responsiveness) into isolated adipocytes were comparable between all three groups, whereas PCOS subjects displayed impaired insulin sensitivity. In contrast, myotubes from PCOS subjects displayed reduced insulin responsiveness for glucose uptake and normal sensitivity. There were no differences between groups in the expression of glucose transporter 4 or insulin-signaling proteins or maximal insulin stimulation of phosphorylation of Akt in skeletal muscle, myotubes, or adipocytes. Conclusions: Individuals with PCOS display impaired insulin responsiveness in skeletal muscle and myotubes, whereas isolated adipocytes display impaired insulin sensitivity but normal responsiveness. Skeletal muscle and adipose tissue contribute differently to insulin resistance in PCOS. Insulin resistance in PCOS cannot be accounted for by differences in the expression of selected signaling molecules or maximal phosphorylation of Akt.

2004 ◽  
Vol 96 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Li Chen ◽  
B. L. Grégoire Nyomba

This study examined the effects of maternal ethanol (EtOH) consumption during pregnancy or lactation on glucose homeostasis in the adult rat offspring. Glucose disposal was determined by minimal model during an intravenous glucose tolerance test in rats that had a small or normal birth weight after EtOH exposure in utero and in rats whose mothers were given EtOH during lactation only. All three EtOH groups had decreased glucose tolerance index and insulin sensitivity index, but their glucose effectiveness was not different from that of controls. In addition, EtOH rat offspring that were small at birth had elevated plasma, liver, and muscle triglyceride levels. The data show that EtOH exposure during pregnancy programs the body to insulin resistance later in life, regardless of birth weight, but that this effect also results in dyslipidemia in growth-restricted rats. In addition, insulin resistance is also evident after EtOH exposure during lactation.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
R. W. A. Mackenzie ◽  
P. Watt

Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA) and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS) and protein kinase B (PKB/Akt) or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5′ AMP-activated protein kinase (AMPK). In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.


Diabetologia ◽  
2021 ◽  
Author(s):  
Theresia Sarabhai ◽  
Chrysi Koliaki ◽  
Lucia Mastrototaro ◽  
Sabine Kahl ◽  
Dominik Pesta ◽  
...  

Abstract Aims/hypothesis Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-stimulated myocellular glucose metabolism and insulin signalling. Methods In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (Rd) before and during hyperinsulinaemic–euglycaemic clamps with d-[6,6-2H2]glucose. In serial skeletal muscle biopsies, subcellular lipid metabolites and insulin signalling were measured before and after meals. Results SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ. Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During clamp, SAF and PAL both decreased insulin-stimulated Rd (p < 0.05 vs VCL), but non-oxidative glucose disposal was lower after PAL compared with SAF (p < 0.05). Muscle serine1101-phosphorylation of IRS-1 was increased upon SAF and PAL consumption (p < 0.05), whereas PAL decreased serine473-phosphorylation of Akt more than SAF (p < 0.05). Conclusions/interpretation Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with oleate and is associated with PKC isoforms activation and inhibitory insulin signalling. Trial registration ClinicalTrials.gov.NCT01736202. Funding German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German Center for Diabetes Research. Graphical abstract


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Vitor Fernandes Martins ◽  
Samuel LaBarge ◽  
Kristoffer Svensson ◽  
Jennifer M Cunliffe ◽  
Dion Banoian ◽  
...  

Abstract Introduction: Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. Methods: We used Cre-LoxP methodology to generate mice with a tamoxifen-inducible, conditional knock out of Ep300 and/or Crebbp in skeletal muscle. At 13-15 weeks of age, the knockout was induced via oral gavage of tamoxifen and oral glucose tolerance, ex vivo skeletal muscle insulin sensitivity, and microarray and proteomics analysis were done. Results: Loss of both p300 and CBP in adult mouse skeletal muscle rapidly and severely impairs whole body glucose tolerance and skeletal muscle insulin sensitivity. Furthermore, giving back a single allele of either p300 or CBP rescues both phenotypes. Moreover, the severe insulin resistance in the p300/CBP double knockout mice is accompanied by significant changes in both mRNA and protein expression of transcript/protein networks critical for insulin signaling, GLUT4 trafficking, and metabolism. Lastly, in human skeletal muscle samples, p300 and CBP protein levels correlate significantly and negatively with markers of insulin resistance. Conclusions: p300 and CBP are jointly required for maintaining whole body glucose tolerance and insulin sensitivity in skeletal muscle.


2012 ◽  
Vol 302 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
Elizabeth M. Marchionne ◽  
Maggie K. Diamond-Stanic ◽  
Mujalin Prasonnarong ◽  
Erik J. Henriksen

We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker ( fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser473 phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy of targeting the RAS to improve both blood pressure regulation and insulin action in conditions of insulin resistance.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Melpomeni Peppa ◽  
Chrysi Koliaki ◽  
Panagiotis Nikolopoulos ◽  
Sotirios A. Raptis

We summarize the existing literature data concerning the involvement of skeletal muscle (SM) in whole body glucose homeostasis and the contribution of SM insulin resistance (IR) to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS), adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.


2018 ◽  
Vol 314 (3) ◽  
pp. R468-R477 ◽  
Author(s):  
Bailey Peck ◽  
Josh Huot ◽  
Tim Renzi ◽  
Susan Arthur ◽  
Michael J. Turner ◽  
...  

Protein kinase C-θ (PKC-θ) is a lipid-sensitive molecule associated with lipid-induced insulin resistance in skeletal muscle. Rodent models have not cohesively supported that PKC-θ impairs insulin responsiveness in skeletal muscle. The purpose of this study was to generate mice that lack PKC-θ in skeletal muscle and determine how lipid accumulation and insulin responsiveness are affected in that tissue. Mice lacking PKC-θ in skeletal muscle (SkMPKCθKO) and controls (SkMPKCθWT) were placed on a regular diet (RD) or high-fat diet (HFD) for 15 wk, followed by determination of food intake, fasting glucose levels, lipid accumulation, and insulin responsiveness. There were no differences between SkMPKCθWTand SkMPKCθKOmice on a RD. SkMPKCθKOmice on a HFD gained less weight from 10 through 15 wk of dietary intervention ( P < 0.05). This was likely due to less caloric consumption ( P = 0.0183) and fewer calories from fat ( P < 0.001) compared with SkMPKCθWTmice on a HFD. Intramyocellular lipid accumulation ( P < 0.0001), fatty acid binding protein 4, and TNF-α mRNA levels ( P < 0.05) were markedly reduced in SkMPKCθKOcompared with SkMPKCθWTmice on a HFD. As a result, fasting hyperglycemia was mitigated and insulin responsiveness, as indicated by Akt phosphorylation, was maintained in SkMPKCθKOon a HFD. Liver lipid accumulation was not affected by genotype, suggesting the deletion of PKC-θ from skeletal muscle has a tissue-specific effect. PKC-θ is a regulator of lipid-induced insulin resistance in skeletal muscle. However, the effects of this mutation may be tissue specific. Further work is warranted to comprehensively evaluated whole body metabolic responses in this model.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Alice S Ryan ◽  
Heidi Ortmeyer ◽  
Frederick Ivey ◽  
Charlene Hafer-Macko

Risk of glucose intolerance and diabetes increases in chronic stroke. The purpose of this study was to assess insulin sensitivity and glycogen synthase (GS), a known benchmark index of insulin action in skeletal muscle, and to compare the activity of this important regulatory enzyme between paretic (P) and non-paretic (NP) skeletal muscle in chronic stroke. We measured insulin sensitivity (M) and bilateral GS fractional activity (ratio of independent to total activity), in lyophilized microdissected muscle samples obtained after an overnight fast and 2 hrs into a 3-hr 80 mU . m -2. min -1 hyperinsulinemic-euglycemic clamp in 21 stroke survivors (n=15 men, n=6 women) (age: 59±2 yrs, BMI: 31±2 kg/m 2 , X±SEM). All had hemiparetic gait after ischemic stroke (>6 months), low aerobic capacity (VO 2 peak, 19.7±1.3 ml/kg/min), and wide range of %body fat (11-48%). Leg lean mass was lower in P than NP (9.3±0.5 vs. 10.0±0.5 kg, P<0.001). Subjects had either normal glucose tolerance (n=7), impaired glucose tolerance (n=7), or diabetes (n=7) and insulin resistance (M: 38.5±2.6 umol/kgFFM/min). Insulin robustly increased GS fractional activity (basal vs. insulin) in P (2.8±0.4 vs.7.5±0.8%, P<0.00001) and NP (2.7±0.4 vs. 9.1±1.1%, P<0.00001) muscle. The %change was greater in NP than P (213±32 vs. 296±36%, P=0.04). The effect of in vivo insulin to increase GS fractional activity was associated with M in P and NP muscle (r=0.59 and r=0.49, P<0.05). In conclusion, muscle atrophy and a reduction in insulin action in paretic muscle likely contribute to whole body insulin resistance in chronic stroke.


Sign in / Sign up

Export Citation Format

Share Document