scholarly journals Characterization of Human Adrenal Steroidogenesis During Fetal Development

2018 ◽  
Vol 104 (5) ◽  
pp. 1802-1812 ◽  
Author(s):  
Cecilie Melau ◽  
John Erik Nielsen ◽  
Hanne Frederiksen ◽  
Karen Kilcoyne ◽  
Signe Perlman ◽  
...  

Abstract Context The endocrine function of human fetal adrenals (HFAs) is activated already during first trimester, but adrenal steroidogenesis during fetal life is not well characterized. Objective This study aimed to investigate HFA steroidogenesis by analyzing adrenal glands from first and second trimesters. Design and Setting Male and female HFA from gestational weeks (GWs) 8 to 19 were examined, including a total of 101 samples from 83 fetuses. Main Outcome Measure(s) Expression level of steroidogenic genes and protein expression/localization were determined by quantitative PCR and immunohistochemistry, respectively, and intra-adrenal steroid levels were quantified by LC-MS/MS. Results Transcriptional levels of StAR, CYP11A1, CYP17A1, CYP21A2, CYP11B1/2, and SULT2A1 were significantly higher in second trimester compared to first trimester (P < 0.05), whereas expression levels of 3β-HSD2 and ARK1C3 were unaltered between GWs 8 and 19. All investigated steroidogenic proteins were expressed in a distinct pattern throughout the investigated period, with most enzymes expressed primarily in the fetal zone, except 3β-HSD1/2, which was expressed mainly in the definitive zone. Abundant steroidogenic enzyme expression was reflected in overall high intra-adrenal tissue concentrations of mineralocorticoids, glucocorticoids, and androgens; cortisol was the most abundant (1071 to 2723 ng/g tissue), and testosterone levels were the lowest (2 to 14 ng/g tissue). Conclusions The expression profiles of HFA steroidogenic enzymes are distinct from first to second trimester, with no major differences between male and female samples. Intra-adrenal steroid hormone concentrations confirm that cortisol is produced throughout first and second trimesters, suggesting continued regulation of the hypothalamus-pituitary-adrenal axis during this entire period.

1963 ◽  
Vol 43 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Julian I. Kitay

ABSTRACT Administration of a depot testosterone preparation to male and female rats resulted in no change in body or pituitary weight in either sex. Pituitary corticotrophin content was unaltered in male animals but was reduced in females. Adrenal weights and adrenal RNA and DNA contents were decreased in both sexes. Plasma corticosterone concentrations were unaffected in males but were reduced in female rats after stress or corticotrophin injection. Hepatic reduction of ring A in vitro and biological half-life of corticosterone in vivo were unchanged in male animals but impaired in females. Testosterone administration to intact male rats significantly increased adrenal steroidogenesis measured in vitro. A significant decrease in steroid production was found in intact females but increased steroidogenesis was observed in adrenals from testosterone-treated oophorectomized animals. No effect was obtained following addition of testosterone directly in vitro. The data suggest that testosterone leads both to diminution of corticotrophin secretion and enhancement of adrenal steroid secretory capacity. In intact female rats, these effects are complicated by suppression of oestrogen secretion, the effects of which have been reported previously.


2007 ◽  
Vol 46 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Hong-Wei Liu ◽  
Biao Cheng ◽  
Xiao-Bing Fu ◽  
Jian-Fu Li ◽  
Tong-Zhu Sun

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 95-OR
Author(s):  
CÉCILIA LÉGARÉ ◽  
VÉRONIQUE DESGAGNÉ ◽  
FRÉDÉRIQUE WHITE ◽  
MICHELLE S. SCOTT ◽  
PATRICE PERRON ◽  
...  

2006 ◽  
Vol preprint (2007) ◽  
pp. 1
Author(s):  
Jonathan Hecht ◽  
Andrew Onderdonk ◽  
Mary Delaney ◽  
Elizabeth Allred ◽  
Harvey Kliman ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Chuyao Jin ◽  
Lizi Lin ◽  
Na Han ◽  
Zhiling Zhao ◽  
Zheng Liu ◽  
...  

Abstract Background To assess the association between plasma retinol-binding protein 4 (RBP4) levels both in the first trimester and second trimester and risk of gestational diabetes mellitus (GDM). Methods Plasma RBP4 levels and insulin were measured among 135 GDM cases and 135 controls nested within the Peking University Birth Cohort in Tongzhou. Multivariable linear regression analysis was conducted to assess the influence of RBP4 levels on insulin resistance. Conditional logistic regression models were used to compute the odds ratio (OR) and 95% confidence interval (CI) between RBP4 levels and risk of GDM. Results The GDM cases had significantly higher levels of RBP4 in the first trimester than controls (medians: 18.0 μg/L vs 14.4 μg/L; P < 0.05). Plasma RBP4 concentrations in the first and second trimester were associated with fasting insulin, homeostasis model assessment for insulin resistance (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI) in the second trimester (all P < 0.001). With adjustment for diet, physical activity, and other risk factors for GDM, the risk of GDM increased with every 1-log μg/L increment of RBP4 levels, and the OR (95% CI) was 3.12 (1.08–9.04) for RBP4 in the first trimester and 3.38 (1.03–11.08) for RBP4 in the second trimester. Conclusions Plasma RBP4 levels both in the first trimester and second trimester were dose-dependently associated with increased risk of GDM.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 439
Author(s):  
Avinash Chandra Rai ◽  
Eyal Halon ◽  
Hanita Zemach ◽  
Tali Zviran ◽  
Isaac Sisai ◽  
...  

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells—a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.


2021 ◽  
pp. 1-11
Author(s):  
Natalia Santucci ◽  
Rocío Stampone ◽  
Eduardo Brandão Ferreira da Silva ◽  
Silvina Villar ◽  
Silvana Spinelli ◽  
...  

<b><i>Introduction:</i></b> IL-1β, a cytokine from the innate immune response, is well known for its proinflammatory effects and stimulating activity on the hypothalamus-pituitary-adrenal axis, leading to the pituitary synthesis of adrenocorticotropic hormone followed by cortisol (and dehydroepiandrosterone – DHEA) release by the adrenal gland. While IL-1β modulates the adrenal steroidogenesis at the central level, it is unclear whether it also exerts an effect on the adrenal gland. <b><i>Method:</i></b> We studied the effect of IL-1β on adrenal steroid production and steroidogenic enzyme RNA expression in the human cell line NCI-H295R. We also explored eventual changes in the microRNA (miRNA) profile from IL-1β-treated NCI-H295R cells. <b><i>Results:</i></b> Transcripts encoding IL-1β receptors 1 and 2 were noticeable in the cell line, with cortisol and DHEA production showing a subtle increase after cytokine treatment. Transcripts from key enzymes in the steroidogenic pathway were analyzed, with no noticeable changes on them. The miRNA profile was modified by IL-1β treatment to an extent which bears some relationship with the regulatory mechanisms underlying adrenal steroid production. Since orphan nuclear receptors NR4As have emerged as potential key factors for coordinating inflammatory and metabolic responses, cell expression studies were also carried out to show an NR4As transcript augmentation following IL-1β treatment. <b><i>Discussion/Conclusions:</i></b> The subtle increase in adrenal steroid production in response to IL-1β stimulation without any modification in the transcription of the steroidogenic enzymes analyzed suggests an additional inflammatory/anti-inflammatory loop, wherein NR4As receptors may participate. Besides its physiological role, this process might be implied in pathological states accompanied by an unbalanced immune-endocrine relationship.


Sign in / Sign up

Export Citation Format

Share Document