Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion

1993 ◽  
Vol 77 (1) ◽  
pp. 27-32 ◽  
Author(s):  
P. H. Andersen
2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Masataka YOKOYAMA ◽  
Yoshio KOBAYASHI ◽  
Tohru MINAMINO

Cellular senescence is a state of irreversible growth arrest induced by various stresses such as oncogenic stimuli. This response is controlled by negative regulators of the cell cycle like the p53 tumor suppressor protein. Accumulating evidence has suggested a role of p53 activation in various age-associated conditions including atherosclerosis, heart failure and diabetes. Here we show that endothelial p53 activation plays a pathological role in the regulation of endothelial function and glucose metabolism under diabetic conditions. Endothelial expression of p53 was markedly up-regulated in a streptozotocin-induced diabetes model. Endothelial function such as acetylcholine-dependent vasodilatation was markedly impaired in this model. Although hyperglycemia was not altered, impairment of endothelial function was significantly improved in mice with endothelial cell-specific p53 deficiency. In same way, p53 was markedly activated in ischemic vessels, and endothelial p53 deficiency enhanced ischemia-induced angiogenesis. Mechanistically, endothelial p53 up-regulated the expression of PTEN that negatively regulated the Akt-eNOS pathway, and therefore disruption of p53 improved endothelial dysfunction. We also found that endothelial p53 was markedly activated, and the Akt-eNOS pathway was attenuated in a diet-induced obesity model. Disruption of endothelial p53 activation improved dietary inactivation of eNOS that up-regulated the expression of PGC-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Inhibition of endothelial p53 also improved dietary impairment of glucose transport into skeletal muscle by up-regulating endothelial expression of glucose transporter 1. Consequently, mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation compared with control littermates. These results indicate that endothelial p53 negatively regulates endothelium-dependent vasodilatation, ischemia-induced angiogenesis, and mitochondrial biogenesis by inhibiting the Akt-eNOS pathway and suggest that inhibition of endothelial p53 could be a novel therapeutic target in diabetic patients.


2005 ◽  
Vol 33 (2) ◽  
pp. 354-357 ◽  
Author(s):  
M. Björnholm ◽  
J.R. Zierath

Type II diabetes is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue and liver and pancreatic β-cell defects. Since the skeletal muscle accounts for approx. 75% of whole body insulin-stimulated glucose uptake, defects in this tissue play a major role in the impaired glucose homoeostasis in Type II diabetic patients. Thus identifying defective steps in this process may reveal attractive targets for drug development to combat insulin resistance and Type II diabetes. This review will describe the effects of insulin on glucose transport and other metabolic events in skeletal muscle that are mediated by intracellular signalling cascades. Evidence for impaired activation of the insulin receptor signalling cascade and defective glucose transporter 4 translocation in the skeletal muscle from Type II diabetic patients will be presented. Through the identification of the intracellular defects in insulin action that control glucose homoeostasis, a better understanding of the disease pathogenesis can be gained and strategies for intervention may be developed.


2006 ◽  
Vol 84 (6) ◽  
pp. 647-654 ◽  
Author(s):  
Sameer Mohammad ◽  
Asia Taha ◽  
Kamal Akhtar ◽  
R.N.K. Bamezai ◽  
Najma Zaheer Baquer

Plasma glucose levels are maintained by a precise balance between glucose production and its use. Liver pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK), 2 key enzymes of glycolysis and gluconeogenesis, respectively, play a crucial role in this glucose homeostasis along with skeletal muscle glucose transporter (GLUT4). In the diabetic state, this balance is disturbed owing to the absence of insulin, the principal factor controlling this regulation. In the present study, alloxan-diabetic animals having high glucose levels of more than 300 mmol/L have been taken and the administration of Trigonella seed powder (TSP) to the diabetic animals was assessed for its effect on the expression of PK and PEPCK in liver and GLUT4 distribution in skeletal muscle of alloxan-diabetic rats. TSP treatment to the diabetic animals resulted in a marked decrease in the plasma glucose levels. Trigonella treatment partially restored the altered expression of PK and PEPCK. TSP treatment also corrected the alterations in the distribution of GLUT4 in the skeletal muscle.


2001 ◽  
Vol 101 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Abram KATZ ◽  
Karin EKBERG ◽  
Bo-Lennart JOHANSSON ◽  
John WAHREN

The purpose of this study was to quantify the extent to which skin blood flow (SBF) responses to application of endothelium-dependent and -independent vasodilating agents differ between Type I diabetic patients and healthy subjects. Patients and matched controls were studied after an overnight fast. SBF was determined with laser Doppler perfusion imaging before and after iontophoresis of acetylcholine (Ach; endothelium-dependent) and sodium nitroprusside (SNP; endothelium-independent). Basal SBF did not differ significantly between groups. Iontophoresis of ACh and SNP increased SBF 20-fold in controls. In the patients, the increases in SBF following iontophoresis of ACh and SNP were reduced by 18% and 19%, respectively, versus controls (P < 0.05 for both). These data demonstrate that Type I diabetic patients have similar diminished SBF responses to iontophoresis of ACh and SNP, which suggests that non-endothelial-dependent factors are primarily responsible for the diminished SBF responses.


Physiology ◽  
2021 ◽  
Author(s):  
David H. Wasserman

Research conducted over the last 50 years has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane. Transport alone, however, does not result in net glucose uptake as freeglucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucosecannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter, GLUT4, in skeletalmuscle. By contrast, the insulin-regulated hexokinase, hexokinase II parallels RobertFrost's Road Not Taken. Here the case is made that an understanding of glucosephosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can beregulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.


Sign in / Sign up

Export Citation Format

Share Document