Bone Formation Rate in Older Normal Women: Concurrent Assessment with Bone Histomorphometry, Calcium Kinetics, and Biochemical Markers*

1988 ◽  
Vol 67 (4) ◽  
pp. 741-748 ◽  
Author(s):  
RICHARD EASTELL ◽  
PIERRE D. DELMAS ◽  
STEPHEN F. HODGSON ◽  
ERIK F. ERIKSEN ◽  
KENNETH G. MANN ◽  
...  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yasutaka Sotozono ◽  
Kazuya Ikoma ◽  
Masamitsu Kido ◽  
Okihiro Onishi ◽  
Masataka Minami ◽  
...  

Abstract Background Teriparatide (TPTD) is a drug for osteoporosis that promotes bone formation and improves bone quality. However, the effects of TPTD on cortical bone are not well understood. Sweep imaging with Fourier transform (SWIFT) has been reported as a useful tool for evaluating bound water of cortical bone, but it has yet to be used to investigate the effects of TPTD on cortical bone. This study aimed to evaluate the consequences of the effect of TPTD on cortical bone formation using SWIFT. Methods Twelve-week-old female Sprague-Dawley rats (n = 36) were reared after ovariectomy to create a postmenopausal osteoporosis model. They were divided into two groups: the TPTD and non-TPTD groups. Rats were euthanized at 4, 12, and 24 weeks after initiating TPTD treatment. Tibial bones were evaluated using magnetic resonance imaging (MRI) and bone histomorphometry. In MRI, proton density-weighted imaging (PDWI) and SWIFT imaging were performed. The signal-to-noise ratio (SNR) was calculated for each method. The same area evaluated by MRI was then used to calculate the bone formation rate by bone histomorphometry. Measurements were compared using the Mann-Whitney U-test, and a P-value of < 0.05 was considered significant. Results PDWI-SNR was not significantly different between the two groups at any time point (P = 0.589, 0.394, and 0.394 at 4, 12, and 24 weeks, respectively). Contrarily, SWIFT-SNR was significantly higher in the TPTD group than in the non-TPTD group at 4 weeks after initiating treatment, but it was not significantly different at 12 and 24 weeks (P = 0.009, 0.937, and 0.818 at 4, 12, and 24 weeks, respectively). The bone formation rate assessed by histomorphometry was significantly higher in the TPTD group than in the non-TPTD group at all timepoints (P < 0.05, all weeks). In particular, at 4 weeks, the bone formation rate was markedly higher in the TPTD group than in the non-TPTD group (P = 0.028, 1.98 ± 0.33 vs. 0.09 ± 0.05 μm3/μm2/day). Conclusions SWIFT could detect increased signals of bound water, reflecting the effect of TPTD on the cortical bone. The signal detected by SWIFT reflects a marked increase in the cortical bone formation rate.


2015 ◽  
Vol 309 (11) ◽  
pp. E936-E948 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Panan Suntornsaratoon ◽  
Nateetip Krishnamra ◽  
...  

β-Thalassemia, a hereditary anemic disorder, is often associated with skeletal complications that can be found in both males and females. The present study aimed to investigate the age- and sex-dependent changes in bone mineral density (BMD) and trabecular microstructure in βIVSII-654knockin thalassemic mice. Dual-energy X-ray absorptiometry and computer-assisted bone histomorphometry were employed to investigate temporal changes in BMD and histomorphometric parameters in male and female mice of a βIVSII-654knockin mouse model of human β-thalassemia, in which impaired splicing of β-globin transcript was caused by hemizygous C→T mutation at nucleotide 654 of intron 2. Young, growing βIVSII-654mice (1 mo old) manifested shorter bone length and lower BMD than their wild-type littermates, indicating possible growth retardation and osteopenia, the latter of which persisted until 8 mo of age (adult mice). Interestingly, two-way analysis of variance suggested an interaction between sex and βIVSII-654genotype, i.e., more severe osteopenia in adult female mice. Bone histomorphometry further suggested that low trabecular bone volume in male βIVSII-654mice, particularly during a growing period (1–2 mo), was primarily due to suppression of bone formation, whereas both a low bone formation rate and a marked increase in osteoclast surface were observed in female βIVSII-654mice. In conclusion, osteopenia and trabecular microstructural defects were present in both male and female βIVSII-654knockin thalassemic mice, but the severity, disease progression, and cellular mechanism differed between the sexes.


2021 ◽  
Author(s):  
Sotozono Yasutaka ◽  
Kazuya Ikoma ◽  
Masamitsu Kido ◽  
Okihiro Onishi ◽  
Masataka Minami ◽  
...  

Abstract Background: Teriparatide (TPTD) is a drug for osteoporosis that promotes bone formation and improves bone turnover. However, the specific effects of TPTD on cortical bone are not well understood. Sweep imaging with Fourier transform (SWIFT) has been reported as a useful tool for evaluating cortical bone, but it has yet to be used to investigate the effects of TPTD on cortical bone. This study aimed to evaluate the effects of TPTD on cortical bone turnover using SWIFT in rats. Methods: Twelve-week-old female Sprague-Dawley rats (n=36) were reared for 12 weeks after ovariectomy to create a postmenopausal osteoporosis model. They were divided into two groups: the TPTD and non-TPTD groups. Rats were euthanized at 4, 12, and 24 weeks after initiating TPTD treatment. Tibial bones were extracted and evaluated using magnetic resonance imaging (MRI) and bone histomorphometry. In MRI, proton density-weighted imaging (PDWI) and SWIFT imaging were performed. The signal-to-noise ratio (SNR) was calculated for each method. The same area evaluated by MRI was then used to calculate for the bone formation rate by bone histomorphometry . Measurements were compared using the Mann-Whitney U-test, and a P-value of <0.05 was considered significant. Results: PDWI-SNR was not significantly different between the two groups at any time point (P = 0.589, 0.394, and 0.394 at 4, 12, and 24 weeks, respectively). Contrarily, SWIFT-SNR was significantly higher in the TPTD group than in the non-TPTD group at 4 weeks after initiating treatment, but it was not significantly different at 12 and 24 weeks (P = 0.009, 0.937, and 0.818 at 4, 12, and 24 weeks, respectively). The bone formation rate was significantly higher in the TPTD group than in the non-TPTD group at all timepoints (P < 0.05, all weeks). In particular, at 4 weeks, the bone formation rate was markedly higher in the TPTD group than in the non-TPTD group (1.98±0.33 vs. 0.09±0.05 μm3/μm2/day).Conclusions: The marked increase of the bone formation rate in the cortical bone by TPTD could be measured using SWIFT. SWIFT could be an effective tool for evaluating the effects of TPTD on cortical bone turnover as images.


2003 ◽  
Vol 88 (8) ◽  
pp. 3966-3972 ◽  
Author(s):  
Pat Mahachoklertwattana ◽  
Vorachai Sirikulchayanonta ◽  
Ampaiwan Chuansumrit ◽  
Patcharee Karnsombat ◽  
Lulin Choubtum ◽  
...  

Thalassemia/hemoglobinopathy is a hereditary disease that causes chronic anemia and increased erythropoiesis. Consequently, an expansion of bone marrow spaces may contribute to osteopenia/osteoporosis. However, the pathogenesis of bone changes is not yet known. We, therefore, carried out the study on bone histomorphometry and biochemical and hormonal profiles in children and adolescents with suboptimally treated β-thalassemia disease with the hope of gaining some new insight into the cellular and structural alterations of thalassemic bone. Seventeen patients underwent iliac crest bone biopsy for histomorphometric analyses. Bone mineral density (BMD) measurements were performed by dual energy x-ray absorptiometry. Most patients had growth retardation and delayed bone age. BMD was low especially at the lumbar spine. Serum IGF-I levels were almost always low. Bone histomorphometry revealed increased osteoid thickness, osteoid maturation time, and mineralization lag time, which indicate impaired bone matrix maturation and defective mineralization. In addition, iron deposits appeared along mineralization fronts and osteoid surfaces. Moreover, focal thickened osteoid seams were found together with focal iron deposits. Dynamic bone formation study revealed reduced bone formation rate. These findings indicate that delayed bone maturation and focal osteomalacia are the pathogenesis of bone disease in suboptimally blood-transfused thalassemics with iron overload. Iron deposits in bone and low circulating IGF-I levels may partly contribute to the above findings.


2006 ◽  
Vol 76 (3) ◽  
pp. 111-116 ◽  
Author(s):  
Hiroshi Matsuzaki ◽  
Misao Miwa

The purpose of this study was to clarify the effects of dietary calcium (Ca) supplementation on bone metabolism of magnesium (Mg)-deficient rats. Male Wistar rats were randomized by weight into three groups, and fed a control diet (control group), a Mg-deficient diet (Mg- group) or a Mg-deficient diet having twice the control Ca concentrations (Mg-2Ca group) for 14 days. Trabecular bone volume was significantly lower in the Mg - and Mg-2Ca groups than in the control group. Trabecular number was also significantly lower in the Mg - and Mg-2Ca groups than in the control group. Mineralizing bone surface, mineral apposition rate (MAR), and surface referent bone formation rate (BFR/BS) were significantly lower in the Mg - and Mg-2Ca groups than in the control group. Furthermore, MAR and BFR/BS were significantly lower in the Mg-2Ca group than in the Mg - group. These results suggest that dietary Ca supplementation suppresses bone formation in Mg-deficient rats.


1984 ◽  
Vol 246 (2) ◽  
pp. R190-R196 ◽  
Author(s):  
R. H. Drivdahl ◽  
C. C. Liu ◽  
D. J. Baylink

Weanling Sprague-Dawley rats subjected to varying degrees of low-Ca dietary stress (depletion) showed graded increases in the rate of endosteal bone formation when normal dietary Ca was restored (repletion). There was a strong positive correlation between the rate of bone resorption in depletion and the rate of bone formation attained after 1 wk of repletion. However, bone formation declined rapidly within the first 4 wk of repletion, despite the persistence of a substantial endosteal bone volume deficit. Furthermore the medullary area (indicative of bone volume) did not by itself determine the bone formation rate. Bone volume in test groups was restored to control levels after 6 mo of repletion, and this result could be predicted by a kinetic analysis. Thus, although very high rates of formation in early repletion decline rapidly, smaller increments relative to controls must be sustained for long periods. Our data indicate that increased formation rats at all stages of repletion are a consequence of elevations in both osteoblast number and osteoblast activity.


2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


Sign in / Sign up

Export Citation Format

Share Document