scholarly journals SUN-552 Follistatin-Like 3 (FSTL3), a Transforming Growth Factor β (TGFβ) Ligand Inhibitor, Regulates Placental Development in Mice

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Josef Huntington ◽  
Rachel Robertson ◽  
Gurtej K Dhoot ◽  
Imelda M McGonnell ◽  
Caroline Wheeler-Jones ◽  
...  

Abstract Follistatin-like 3 (FSTL3), a glycoprotein that inhibits transforming growth factor-β (TGFβ) ligands such as activin, is expressed highly in the placenta and other vascular tissues. In addition, FSTL3 is strongly induced in pre-eclamptic placenta. To test the hypothesis that FSTL3 function is required for capillary bed structure and function we studied the placenta in FSTL3 gene deleted mice (FSTL3 KO). We have previously shown that FSTL3 deletion produces striking defects in the placenta when compared to WT. Placental size increases significantly in comparison to WT, at 16.5 and 18.5 dpc, with concurrent reduction in placental efficiency at 18.5 dpc. Histological analyses reveal structural differences in placental junctional zones in FSTL3 KO placenta compared to WT. Morphometric analyses show that the labyrinth area compared to the placenta area is significantly reduced in FSTL3 KO mice. We also found that activin-responsive FSTL3-synexpression genes are upregulated in FSTL3 KO placenta. Of these, EPHB4 protein is induced in the placenta along with its ligand EphrinB2. Here we show that FSTL3 deletion leads to endothelial cell expansion but reduction in blood vessel density along with increased extracellular matrix deposition. Further investigation of the placental phenotype revealed differential expression patterns of desmin and cytokeratin protein, reduced von Willebrand factor (VWF) and increased CD31 and VEGFR2 labelling within FSTL3 KO mice placental labyrinths. To identify mechanisms that might lead to the altered placental development in FSTL3 KO mice qPCR analyses were performed. Our results identified differences in the expression of crucial transcripts, such as Cdh5, Pgf, Fra1and Cited1, that are associated with the regulation of vascular biology. Additionally, we find increased Histone3 and SMAD2 phosphorylation in FSTL3 KO placenta indicating increased proliferation and activin signalling, respectively. These findings suggest that the balance between cellular proliferation and differentiation might be altered in the absence of FSTL3. Thus, we conclude that FSTL3 function, at least partly through the inhibition of activin action, is necessary for normal placental circulation and development.

2012 ◽  
Vol 80 (5) ◽  
pp. 1853-1857 ◽  
Author(s):  
Tassili A. F. Weehuizen ◽  
Catharina W. Wieland ◽  
Gerritje J. W. van der Windt ◽  
Jan-Willem Duitman ◽  
Louis Boon ◽  
...  

ABSTRACTMelioidosis, caused by the Gram-negative bacteriumBurkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast Asia and northern Australia. An important controller of the immune system is the pleiotropic cytokine transforming growth factor β (TGF-β), of which Smad2 and Smad3 are the major signal transducers. In this study, we aimed to characterize TGF-β expression and function in experimental melioidosis. TGF-β expression was determined in 33 patients with culture-proven infection withB. pseudomalleiand 30 healthy controls. We found that plasma TGF-β concentrations were strongly elevated during melioidosis. In line with this finding, TGF-β expression in C57BL/6 mice intranasally inoculated withB. pseudomalleiwas enhanced as well. To assess the role of TGF-β, we inhibited TGF-β using a selective murine TGF-β antibody. Treatment of mice with anti-TGF-β antibody resulted in decreased lung Smad2 phosphorylation. TGF-β blockade appeared to be protective: mice treated with anti-TGF-β antibody and subsequently infected withB. pseudomalleishowed diminished bacterial loads. Moreover, less distant organ injury was observed in anti-TGF-β treated mice as shown by reduced blood urea nitrogen (BUN) and aspartate transaminase (AST) values. However, anti-TGF-β treatment did not have an effect on survival. In conclusion, TGF-β is upregulated duringB. pseudomalleiinfection and plays a limited but proinflammatory role during experimental melioidosis.


2008 ◽  
Vol 104 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Helen D. Kollias ◽  
John C. McDermott

The superfamily of transforming growth factor-β (TGF-β) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-β signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-β superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-β superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-β and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-β and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.


2003 ◽  
Vol 278 (28) ◽  
pp. 26249-26257 ◽  
Author(s):  
Céline Prunier ◽  
Marcia Pessah ◽  
Nathalie Ferrand ◽  
Su Ryeon Seo ◽  
Philip Howe ◽  
...  

2004 ◽  
Vol 41 (4) ◽  
pp. 392-402 ◽  
Author(s):  
Elyane Poisson ◽  
James J. Sciote ◽  
Richard Koepsel ◽  
Gregory M. Cooper ◽  
Lynne A. Opperman ◽  
...  

Objective To describe the expression patterns of the various transforming growth factor-β (Tgf-β) isoforms, known to be involved in suture development, in the perisutural tissues of rabbits with naturally occurring craniosynostosis and relate such differential expression to the pathogenesis of premature suture fusion. Method Twenty-one coronal sutures were harvested from six wild-type control New Zealand White rabbits and five rabbits with familial coronal suture synostosis at 25 days of age for histomorphometric and immunohistochemical analyses. Tgf-β isoform immunoreactivity was assessed using indirect immunoperoxidase procedures with specific antibodies. Results Synostosed sutures had significantly (p < .01) greater bone area and relatively more osteoblasts and osteocytes in the osteogenic fronts, compared with wild-type sutures. Tgf-β isoform immunoreactivity showed differential staining patterns between wild-type and synostosed perisutural tissues. In wild-type sutures, Tgf-β1 and Tgf-β3 immunoreactivity was significantly (p < .001) greater than Tgf-β2 staining in all perisutural tissues. In synostosed sutures, the opposite pattern was observed, with Tgf-β2 immunoreactivity significantly (p < .001) greater than Tgf-β1 and Tgf-β3 in the osteogenic fronts, dura mater, and periosteum. Conclusions Findings from this study suggest that an overexpression of Tgf-β2, either in isolation or in association with an underexpression of Tgf-β1 and Tgf-β3, may be related to premature suture fusion (craniosynostosis) in this pathological rabbit model. These abnormal expression patterns may be involved in premature suture fusion either through increased cell proliferation, decreased apoptosis of the osteoblasts or both at the osteogenic fronts.


2017 ◽  
Vol 26 (3) ◽  
pp. 381-394 ◽  
Author(s):  
Shiying Li ◽  
Xiaosong Gu ◽  
Sheng Yi

Transforming growth factor-β (TGF-β) belongs to a group of pleiotropic cytokines that are involved in a variety of biological processes, such as inflammation and immune reactions, cellular phenotype transition, extracellular matrix (ECM) deposition, and epithelial–mesenchymal transition. TGF-β is widely distributed throughout the body, including the nervous system. Following injury to the nervous system, TGF-β regulates the behavior of neurons and glial cells and thus mediates the regenerative process. In the current article, we reviewed the production, activation, as well as the signaling pathway of TGF-β. We also described altered expression patterns of TGF-β in the nervous system after nerve injury and the regulatory effects of TGF-β on nerve repair and regeneration in many aspects, including inflammation and immune response, phenotypic modulation of neural cells, neurite outgrowth, scar formation, and modulation of neurotrophic factors. The diverse biological actions of TGF-β suggest that it may become a potential therapeutic target for the treatment of nerve injury and regeneration.


2012 ◽  
Vol 196 (5) ◽  
pp. 589-603 ◽  
Author(s):  
Megan Gervasi ◽  
Anna Bianchi-Smiraglia ◽  
Michael Cummings ◽  
Qiao Zheng ◽  
Dan Wang ◽  
...  

The process of epithelial–mesenchymal transition (EMT) in response to transforming growth factor–β (TGF-β) contributes to tissue fibrosis, wound healing, and cancer via a mechanism that is not fully understood. This study identifies a critical role of JunB in the EMT and profibrotic responses to TGF-β. Depletion of JunB by small interfering ribonucleic acid abrogates TGF-β–induced disruption of cell–cell junctions, formation of actin fibers, focal adhesions, and expression of fibrotic proteins. JunB contributes to Smad-mediated repression of inhibitor of differentiation 2 through interaction with transcription repressor activating transcription factor 3. Importantly, JunB mediates the TGF-β induction of profibrotic response factors, fibronectin, fibulin-2, tropomyosin (Tpm1), and integrin-β3, which play critical roles in matrix deposition, cell–matrix adhesion, and actin stress fibers. In summary, JunB provides important input in setting the transcriptional program of the EMT and profibrotic responses to TGF-β. Thus, JunB represents an important target in diseases associated with EMT, including cancer and fibrosis.


Sign in / Sign up

Export Citation Format

Share Document