scholarly journals Corrections to: “siRNA-Targeting Transforming Growth Factor-β Type I Receptor Reduces Wound Scarring and Extracellular Matrix Deposition of Scar Tissue”

2014 ◽  
Vol 134 (11) ◽  
pp. 2852
Author(s):  
Yi-Wen Wang ◽  
Nien-Hsien Liou ◽  
Juin-Hong Cherng ◽  
Shu-Jen Chang ◽  
Kuo-Hsing Ma ◽  
...  
2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


Endocrinology ◽  
2021 ◽  
Vol 162 (11) ◽  
Author(s):  
Tsai-Der Chuang ◽  
Derek Quintanilla ◽  
Drake Boos ◽  
Omid Khorram

Abstract The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction–associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.


2001 ◽  
Vol 276 (50) ◽  
pp. 46707-46713 ◽  
Author(s):  
Neil A. Bhowmick ◽  
Roy Zent ◽  
Mayshan Ghiassi ◽  
Maureen McDonnell ◽  
Harold L. Moses

Transforming growth factor-β (TGF-β) can induce epithelial to mesenchymal transdifferentiation (EMT) in mammary epithelial cells. TGF-β-meditated EMT involves the stimulation of a number of signaling pathways by the sequential binding of the type II and type I serine/threonine kinase receptors, respectively. Integrins comprise a family of heterodimeric extracellular matrix receptors that mediate cell adhesion and intracellular signaling, hence making them crucial for EMT progression. In light of substantial evidence indicating TGF-β regulation of various β1integrins and their extracellular matrix ligands, we examined the cross-talk between the TGF-β and integrin signal transduction pathways. Using an inducible system for the expression of a cytoplasmically truncated dominant negative TGF-β type II receptor, we blocked TGF-β-mediated growth inhibition, transcriptional activation, and EMT progression. Dominant negative TGF-β type II receptor expression inhibited TGF-β signaling to the SMAD and AKT pathways, but did not block TGF-β-mediated p38MAPK activation. Interestingly, blocking integrin β1function inhibited TGF-β-mediated p38MAPK activation and EMT progression. Limiting p38MAPK activity through the expression of a dominant negative-p38MAPK also blocked TGF-β-mediated EMT. In summary, TGF-β-mediated p38MAPK activation is dependent on functional integrin β1, and p38MAPK activity is required but is not sufficient to induce EMT.


2012 ◽  
Vol 443 (2) ◽  
pp. 361-368 ◽  
Author(s):  
David A. Carrino ◽  
Sam Mesiano ◽  
Nichole M. Barker ◽  
William W. Hurd ◽  
Arnold I. Caplan

Fibrosis is the formation of excess and abnormal fibrous connective tissue as a result of either a reparative or reactive process. A defining feature of connective tissue is its extracellular matrix, which provides structural support and also influences cellular activity. Two common human conditions that result from fibrosis are uterine fibroids (leiomyomas) and keloid scars. Because these conditions share a number of similarities and because their growth is due primarily to excessive extracellular matrix deposition, we compared the proteoglycans of uterine fibroids and keloid scars with corresponding normal tissues. Our analysis indicates that uterine fibroids and keloid scars contain higher amounts of glycosaminoglycans relative to normal myometrium and normal adult skin respectively. Proteoglycan composition is also different in the fibrotic tissues. Compared with unaffected tissues, uterine fibroids and keloid scars contain higher relative amounts of versican and lower relative amounts of decorin. There is also evidence for a higher level of versican catabolism in the fibrotic tissues compared with unaffected tissues. These qualitative and quantitative proteoglycan differences may play a role in the expansion of these fibroses and in their excessive matrix deposition and matrix disorganization, due to effects on cell proliferation, TGF (transforming growth factor)-β signalling and/or collagen fibril formation.


1994 ◽  
Vol 107 (5) ◽  
pp. 1137-1157 ◽  
Author(s):  
M. Shah ◽  
D.M. Foreman ◽  
M.W. Ferguson

Scarring is a major cause of many clinical problems. Scar tissue interferes with growth, impairs function and is aesthetically unpleasant. However, scarring does not appear to be a problem of embryonic life. Embryonic wounds heal with a lower inflammatory and angiogenic response and have a different growth factor profile compared to adult wounds. We have used neutralising antibody to transforming growth factor-beta 1,2 (TGF-beta 1,2) to alter the growth factor profile of cutaneous wounds in adult rodents and studied the effect on scar tissue formation. This paper extends our preliminary report that neutralising antibody to TGF-beta reduces cutaneous scarring in adult rodents. To be effective, the neutralising antibody to TGF-beta needs to be administered at the time of wounding or soon thereafter. The antiscarring effects of this neutralising antibody to TGF-beta were dose dependent. Exogenous addition of neutralising antibody to TGF-beta to incisional wounds reduced the inflammatory and angiogenic responses and reduced the extracellular matrix deposition in the early stages of wound healing without reducing the tensile strength of the wounds. Importantly, the architecture of the neodermis of wounds treated with neutralising antibody to TGF-beta resembled more closely that of normal dermis compared to the unmanipulated control wounds, which healed with an abnormal neodermal architecture resulting in obvious scarring. This study suggests a novel therapeutic approach to reducing scarring in post-natal life.


Sign in / Sign up

Export Citation Format

Share Document