scholarly journals SAT-717 Region-Specific Effects of the Exposome on Brain Monoamine Levels in Female Rats

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Amrita Kaimal ◽  
Jessica Hooversmith ◽  
Maryam H Al Mansi ◽  
Philip V Holmes ◽  
Sheba M J MohanKumar ◽  
...  

Abstract Prenatal programming with endocrine disrupting chemicals (EDCs), in particular the ubiquitous plasticizers bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP), can induce long-lasting behavioral changes in rats. Additionally, changes in estrogen are correlated with the development of mood disorders in women; however, the underlying neurobiological mechanisms are unclear. This study was conducted to determine the cumulative effects of prenatal exposure to EDCs followed by chronic estradiol treatment in adult female rats on monoamine levels in the prefrontal cortex (PFC) and hippocampus (HC). Dams were orally administered saline (control; 10 µL/kg), BPA (B; 5 µg/kg), DEHP (D; 7.5 mg/kg) or a combination of BPA+DEHP (B+D) during days 6 through 21 of pregnancy. Adult female offspring were sham-implanted or implanted with pellets that release 17β-estradiol (E2) for 90 days (20 ng/day; Innovative Research America). The offspring then underwent a battery of behavioral tests at the end of treatment. Brains collected from the offspring were sectioned and the PFC and HC were microdissected and analyzed for levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT), using High-Performance Liquid Chromatography (HPLC). Significant reductions in monoamine levels were observed in the PFC while NE and 5-HT levels were markedly reduced in the HC after prenatal exposure to D or BD. BPA’s effects on monoamines were comparatively modest. E2 exposure increased DA but decreased 5-HT levels in the PFC of control animals. Prenatal exposure to EDCs made the offspring non-responsive to E2. The marked reduction in monoamine levels could have implications for learning and memory.

2013 ◽  
pp. S89-S98 ◽  
Author(s):  
E. MACÚCHOVÁ ◽  
K. NOHEJLOVÁ-DEYKUN ◽  
R. ŠLAMBEROVÁ

The aim of this study was to investigate the effect of prenatal methamphetamine (MA) exposure and application of the same drug in adulthood on cognitive functions of adult female rats. Animals were prenatally exposed to MA (5 mg/kg) or saline (control group). The cognitive function was tested as ability of spatial learning in the Morris Water Maze (MWM). Each day of the experiment animals received an injection of MA (1 mg/kg) or saline. Our results demonstrated that prenatal MA exposure did not affect the latency to reach the hidden platform or the distance traveled during the Place Navigation Test; however, the speed of swimming was increased in prenatally MA-exposed rats compared to controls regardless of the treatment in adulthood. MA treatment in adulthood increased the latency and distance when compared to controls regardless of the prenatal exposure. Neither prenatal exposure, nor treatment in adulthood affected memory retrieval. As far as the estrous cycle is concerned, our results showed that prenatally MA-exposed females in proestrus/estrus swam faster than females in diestrus. This effect of estrous cycle was not apparent in control females. In conclusion, our results indicate that postnatal, but not prenatal exposure to MA affects learning of adult female rats.


2021 ◽  
Author(s):  
Daniel J Tobiansky ◽  
George V Kachkovski ◽  
Reilly T Enos ◽  
Kim L Schmidt ◽  
E. Angela Murphy ◽  
...  

Maternal diets can have dramatic effects on the physiology, metabolism, and behaviour of offspring that persist into adulthood. However, the effects of maternal sucrose consumption on offspring remain unclear. Here, female rats were fed either a sucrose diet with a human-relevant level of sucrose (25% of kcal) or a macronutrient-matched, isocaloric control diet before, during, and after pregnancy. After weaning, all offspring were fed a standard low-sucrose rodent chow. We measured indicators of metabolism (weight, adipose, glucose tolerance, liver lipids) during development and adulthood (16-24 wk). We also measured food preference and motivation for sugar rewards in adulthood. Finally, in brain regions regulating these behaviours, we measured steroids and transcripts for steroidogenic enzymes, steroid receptors, and dopamine receptors. In male offspring, maternal sucrose intake decreased body mass and visceral adipose, increased preference for high-sucrose and high-fat diets, increased motivation for sugar rewards, and decreased mRNA levels of Cyp17a1 (an androgenic enzyme) in the nucleus accumbens. In female offspring, maternal sucrose intake increased basal corticosterone levels. These data demonstrate the profound, enduring, diverse, and sex-specific effects of maternal sucrose consumption on offspring phenotype.


2019 ◽  
Vol 28 (4) ◽  
pp. 352-360 ◽  
Author(s):  
Abdeslam Mouihate ◽  
Samah Kalakh ◽  
Rawan AlMutairi ◽  
Abdelrahman Alashqar

Background/Aims: Prenatal exposure to lipopolysaccharide (LPS) dampens hippocampal neurogenesis. This effect is associated with increased anxiety-like behavior in adult offspring. Furthermore, blocking serotonin transporters (SERT) promotes adult neurogenesis. Previous studies were performed largely in males. Therefore, we explored the impact of prenatal LPS on neurogenesis, SERT expression in the hippocampus, and anxiety-like behavior in female rats during prepubertal and adulthood stages. Materials and Methods: Timed pregnant rats were injected with either saline or LPS (100 µg/kg, i.p.) on gestational days 15, 17, and 19. Newly born neurons were monitored by immunohistochemistry, and anxiety-like behavior was monitored using the elevated plus maze and open-field test. SERT expression in the hippocampus was assessed by Western blot and immunofluorescence. Results: Prenatal LPS led to reduced hippocampal neurogenesis in adult but not in prepubertal female offspring. This reduced neurogenesis was associated with enhanced hippocampal expression of SERT protein. However, there was no significant impact of prenatal LPS on anxiety-like behavior. Conclusions: Prenatal LPS-induced reduction in neurogenesis was dissociated from anxiety-like behavior in adult female rats. Furthermore, the long-lasting impact of prenatal LPS on neurogenesis in female offspring was age-dependent.


2016 ◽  
Vol 35 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Hala M. Ebaid ◽  
Rania Abdel Rahman Elgawish ◽  
Heba M. A. Abdelrazek ◽  
Ghada Gaffer ◽  
Hend M. Tag

Information on the effects of phytoestrogens on animals has increased recently; however, there were only few studies on prenatal exposure on cellular immune response. Pregnant rats were assigned to 3 groups (12 rats per group), the first was fed control diet, the second was fed low-dose (6.5 g/100 g of diet) soy isoflavones, while the third was fed high-dose (26 g/100 g of diet) soy isoflavones. The female offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection, and intumesce index was calculated on postnatal day 50. After 24 hours of PHA injection, blood samples were collected for tumor necrosis factor α, interferon γ (IFN-γ), and interleukin (IL)-12 determination. Spleen, thymus, and PHA-injected footpads were fixed for histopathology. Intumesce index was significantly ( P < 0.05) reduced in rats’ offspring born from dams fed low- and high-dietary soy isoflavones than that in control groups. Thymic relative weights in offspring of rats fed high-dietary soy isoflavones showed a significant ( P < 0.05) decrease compared to that in the control group. Female offspring where low and high-dietary soy isoflavones were fed to their dams showed a significant ( P < 0.05) decrease in IFN-γ and IL-12 than that in control ones. Spleen of rats born from dams fed high dose of dietary soy isoflavones showed lymphocytic depletion in white pulp. Taking together, it is clear that dietary soy isoflavones at prenatal period had immunosuppressive effect on female offspring after PHA stimulation. This effect was mediated through reduced IFN-γ that interplayed in IL-12 production pathway thus reducing its level.


2017 ◽  
Vol 87 ◽  
pp. 145-154 ◽  
Author(s):  
Alexandra N. Garcia ◽  
Kelsey Bezner ◽  
Christina Depena ◽  
Weiling Yin ◽  
Andrea C. Gore

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sekar Sathiya ◽  
Murugan Ganesh ◽  
Periyathambi Kalaivani ◽  
Vijayan Ranju ◽  
Srinivasan Janani ◽  
...  

Use of antiepileptic drugs (AEDs) in pregnancy warrants various side effects and also deleterious effects on fetal development. The present study was carried out to assess the effects of prenatal exposure to lamotrigine (LTG) on postnatal development and behavioural alterations of offspring. Adult male and female Sprague Dawley rats weighing 150–180 g b. wt. were allowed to copulate and pregnancy was confirmed by vaginal cytology. Pregnant rats were treated with LTG (11.5, 23, and 46 mg/kg, p.o) from gestational day 3 (GND 3) and this treatment continued till postnatal day 11 (PND 11). Offspring were separated from their dam on day 21 following parturition. LTG, at 46 mg/kg, p.o, produced severe clinical signs of toxicity leading to death of dam between GND 15 and 17. LTG, at 11.5 and 23 mg/kg, p.o, showed significant alterations in offspring’s incisors eruption and vaginal opening when compared to age matched controls. LTG (23 mg/kg, p.o) exposed female offspring expressed hyperactive behaviour and decreased GABA-A receptor expression when compared to control rats. These results reveal that prenatal exposure to LTG may impart differential postnatal behavioural alterations between male and female rats which paves way for further investigations.


Sign in / Sign up

Export Citation Format

Share Document