scholarly journals Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research

Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio056010
Author(s):  
Fabrizio Alberti ◽  
Saraa Kaleem ◽  
Jack A. Weaver

ABSTRACTBasidiomycota are a large and diverse phylum of fungi. They can make bioactive metabolites that are used or have inspired the synthesis of antibiotics and agrochemicals. Terpenoids are the most abundant class of natural products encountered in this taxon. Other natural product classes have been described, including polyketides, peptides, and indole alkaloids. The discovery and study of natural products made by basidiomycete fungi has so far been hampered by several factors, which include their slow growth and complex genome architecture. Recent developments of tools for genome and metabolome studies are allowing researchers to more easily tackle the secondary metabolome of basidiomycete fungi. Inexpensive long-read whole-genome sequencing enables the assembly of high-quality genomes, improving the scaffold upon which natural product gene clusters can be predicted. CRISPR/Cas9-based engineering of basidiomycete fungi has been described and will have an important role in linking natural products to their genetic determinants. Platforms for the heterologous expression of basidiomycete genes and gene clusters have been developed, enabling natural product biosynthesis studies. Molecular network analyses and publicly available natural product databases facilitate data dereplication and natural product characterisation. These technological advances combined are prompting a revived interest in natural product discovery from basidiomycete fungi.This article has an associated Future Leader to Watch interview with the first author of the paper.

2021 ◽  
Vol 9 (12) ◽  
pp. 2551
Author(s):  
Quan Zhou ◽  
Kinya Hotta ◽  
Yaming Deng ◽  
Rui Yuan ◽  
Shu Quan ◽  
...  

Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.


Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio057679

ABSTRACTFuture Leader to Watch is a series of interviews with the first authors of a selection of Reviews published in Biology Open, helping early-career researchers promote themselves alongside their papers. Fabrizio Alberti is first author on ‘Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research’, published in BiO. Fabrizio is a Leverhulme Trust Early Career Fellow (Senior Research Fellow) at the School of Life Sciences and Department of Chemistry, University of Warwick, UK, investigating the discovery and biosynthetic characterisation of natural products made by fungi and bacteria.


mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.


2020 ◽  
Vol 177 (10) ◽  
pp. 2169-2178 ◽  
Author(s):  
Angelo A. Izzo ◽  
Mauro Teixeira ◽  
Steve P.H. Alexander ◽  
Giuseppe Cirino ◽  
James R. Docherty ◽  
...  

2016 ◽  
Vol 69 (2) ◽  
pp. 129 ◽  
Author(s):  
John A. Kalaitzis ◽  
Shane D. Ingrey ◽  
Rocky Chau ◽  
Yvette Simon ◽  
Brett A. Neilan

Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.


2014 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Geoffrey A. Cordell

“Why didn’t they develop natural product drugs in a sustainable manner at the beginning of this century?”  In 2035, when about 10.0 billion will inhabit Earth, will this be our legacy as the world contemplates the costs and availability of synthetic and gene-based products for primary health care?  Acknowledging the recent history of the relationship between humankind and the Earth, it is essential that the health care issues being left for our descendants be considered in terms of resources. For most people in the world, there are two vast health care “gaps”, access to quality drugs and the development of drugs for major global and local diseases.  Consequently for all of these people, plants, in their various forms, remain a primary source of health care.  In the developed countries, natural products derived from plants assume a relatively minor role in health care, as prescription and over-the-counter products, even with the widespread use of phytotherapeutical preparations.  Significantly, pharmaceutical companies have retrenched substantially in their disease areas of focus.  These research areas do not include the prevalent diseases of the middle- and lower-income countries, and important diseases of the developed world, such as drug resistance. What then is the vision for natural product research to maintain the choices of drug discovery and pharmaceutical development for future generations?  In this discussion some facets of how natural products must be involved globally, in a sustainable manner, for improving health care will be examined within the framework of the new term “ecopharmacognosy”, which invokes sustainability as the basis for research on biologically active natural products.  Access to the biome, the acquisition, analysis and dissemination of plant knowledge, natural product structure diversification, biotechnology development, strategies for natural product drug discovery, and aspects of multitarget therapy and synergy research will be discussed.  Options for the future will be presented which may be significant as countries decide how to develop approaches to relieve their own disease burden, and the needs of their population for improved access to medicinal agents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258934
Author(s):  
Nico Ortlieb ◽  
Elke Klenk ◽  
Andreas Kulik ◽  
Timo Horst Johannes Niedermeyer

Natural products are an important source of lead compounds for the development of drug substances. Actinomycetes have been valuable especially for the discovery of antibiotics. Increasing occurrence of antibiotic resistance among bacterial pathogens has revived the interest in actinomycete natural product research. Actinobacteria produce a different set of natural products when cultivated on solid growth media compared with submersed culture. Bioactivity assays involving solid media (e.g. agar-plug assays) require manual manipulation of the strains and agar plugs. This is less convenient for the screening of larger strain collections of several hundred or thousand strains. Thus, the aim of this study was to develop a 96-well microplate-based system suitable for the screening of actinomycete strain collections in agar-plug assays. We developed a medium-throughput cultivation and agar-plug assay workflow that allows the convenient inoculation of solid agar plugs with actinomycete spore suspensions from a strain collection, and the transfer of the agar plugs to petri dishes to conduct agar-plug bioactivity assays. The development steps as well as the challenges that were overcome during the development (e.g. system sterility, handling of the agar plugs) are described. We present the results from one exemplary screening campaign targeted to identify compounds inhibiting Agr-based quorum sensing where the workflow was used successfully. We present a novel and convenient workflow to combine agar diffusion assays with microtiter-plate-based cultivation systems in which strains can grow on a solid surface. This workflow facilitates and speeds up the initial medium throughput screening of natural product-producing actinomycete strain collections against monitor strains in agar-plug assays.


2021 ◽  
Author(s):  
Nadya Abbood ◽  
Tien Duy Vo ◽  
Jonas Watzel ◽  
Kenan A. J. Bozhueyuek ◽  
Helge B. Bode

Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatised as inefficient, time-, labour-, and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new-to-nature natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programms. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPS in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mgL-1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.


2020 ◽  
Vol 23 (9) ◽  
pp. 862-876
Author(s):  
Hayrettin O. Gulcan ◽  
Ilkay E. Orhan

With respect to the unknowns of pathophysiology of Alzheimer’s Disease (AD)-, and Parkinson’s Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.


Sign in / Sign up

Export Citation Format

Share Document