Expression pattern of homeobox-containing genes during chick embryogenesis

Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 639-650 ◽  
Author(s):  
S.E. Wedden ◽  
K. Pang ◽  
G. Eichele

We have isolated, sequenced and examined the expression pattern of two tandemly arranged homeobox-containing genes from the chicken. The predicted amino acid sequences of the homeodomain and the adjacent carboxyterminal portion of the protein of the first gene is virtually identical (99%) to that of murine homeobox 2.1 and hence we refer to it as Ghox 2.1 (Gallus homeobox). The closest mouse homologue of the second homeodomain is Hox 2.2 (95% identical within the homeobox), and hence referred to as Ghox 2.2. Northern analysis of embryonic RNA reveals major transcripts of 2 kb for Ghox 2.1 and 1.7 kb for Ghox 2.2. To investigate the transcript pattern, embryos of various stages were dissected into heads, trunks and limb buds and the RNA was analysed by Northern blotting and RNase protection assays. Ghox 2.1 transcripts are present in all three regions. Ghox 2.2 RNA is found in trunks and limb buds, but it is strikingly absent from the developing head. In situ hybridization with 35S-labelled antisense riboprobes derived from Ghox 2.1 demonstrates that this gene is expressed at high levels in spinal chord, myelencephalon and mesonephros. Dorsal root ganglia and the lung rudiment also contain Ghox 2.1 message, but in somewhat lower amounts. Mid- and forebrain, the heart, presomitic mesenchyme and notochord do not contain detectable levels of Ghox 2.1 mRNA. Of particular interest is the expression of Ghox 2.1 in a well-defined patch of mesenchymal tissue situated in an anterioproximal region of the limb bud.

Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 791-806 ◽  
Author(s):  
S. Mackem ◽  
K.A. Mahon

Homeobox genes play a key role in specifying the segmented body plan of Drosophila, and recent work suggests that at least several homeobox genes may play a regulatory role during vertebrate limb morphogenesis. We have used degenerate oligonucleotide primers from highly conserved domains in the homeobox motif to amplify homeobox gene segments from chick embryo limb bud cDNAs using the polymerase chain reaction. Expression of a large number of homeobox genes (at least 17) is detected using this approach. One of these genes contains a novel homeobox loosely related to the Drosophila Abdominal B class, and was further analyzed by determining its complete coding sequence and evaluating its expression during embryogenesis by in situ hybridization. Based on sequence and expression patterns, we have designated this gene as Ghox 4.7 and believe that it is the chick homologue of the murine Hox 4.7 gene (formerly Hox 5.6). Ghox 4.7 is expressed primarily in limb buds during development and shows a striking spatial restriction to the posterior zone of the limb bud, suggesting a role in specifying anterior-posterior pattern formation. In chick, this gene also displays differences in expression between wing and leg buds, raising the possibility that it may participate in specifying limb-type identity.


Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 567-573
Author(s):  
D.M. Fekete ◽  
J.P. Brockes

Adult urodele amphibians can regenerate their limbs after amputation by a process that requires the presence of axons at the amputation plane. Paradoxically, if the limb develops in the near absence of nerves (the ‘aneurogenic’ limb) it can subsequently regenerate in a nerve-independent fashion. The growth zone (blastema) of regenerating limbs normally contains progenitor cells whose division is nerve-dependent. A monoclonal antibody that marks these nerve-dependent cells in the normal blastema does not stain the mesenchymal cells of developing limb buds and only stains the amputated limb bud when axons have reached the plane of amputation. This report shows that the blastemal cells of the regenerating aneurogenic limb also fail to react with the antibody in situ. These data suggest that the blastemal cells arising during normal regeneration have been altered by the nerve. This regulation may occur either at the time of amputation (when the antigen is expressed) or during development (when the limb is first innervated).


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 245-252 ◽  
Author(s):  
S.M. Smith ◽  
G. Eichele

Retinoic acid (RA) is a signaling molecule apparently involved in a variety of morphogenetic processes, such as patterning of developing and regenerating vertebrate limbs. RA binds to specific intracellular receptors that constitute a multigene family. RA receptors (RAR) bind to the regulatory region of specific target genes and thereby control the expression of these genes. Here we report the sequence and spatiotemporal expression pattern of RAR-beta from chick. Northern blots of RNA from whole embryos and from limb buds reveal the presence of transcripts of 3.2, 3.4, and 4.6 kb in size. Using two riboprobes, one that hybridizes to all three RAR-beta mRNAs and a second one, specific for the 4.6 kb transcript, we found by in situ hybridization a differential distribution of RAR-beta transcripts in limb bud mesenchyme, in craniofacial mesenchyme and in hindbrain neuroectoderm. In the hindbrain the 4.6 kb mRNA exhibits an anterior boundary of expression at the level of the constriction between rhombomeres 5 and 6. Examination of neural plate stage embryos by in situ hybridization indicates that this boundary of expression is already defined by this stage. In addition to having several RA receptors that are expressed with distinct spatial patterns in the embryo, our data indicate that the expression pattern of transcripts derived from a single receptor gene can also be differentially expressed, thus providing another level for regulating RA action.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1487-1493 ◽  
Author(s):  
C.N. Coelho ◽  
K.M. Krabbenhoft ◽  
W.B. Upholt ◽  
J.F. Fallon ◽  
R.A. Kosher

It has been suggested that the reciprocal expression of the chicken homeobox-containing genes GHox-8 and GHox-7 by the apical ectodermal ridge and subjacent limb mesoderm might be involved in regulating the proximodistal outgrowth of the developing chick limb bud. In the present study the expression of GHox-7 and GHox-8 has been examined by in situ and dot blot hybridization in the developing limb buds of limbless mutant chick embryos. The limb buds of homozygous mutant limbless embryos form at the proper time in development (stage 17/18), but never develop an apical ectodermal ridge, fail to undergo normal elongation, and eventually degenerate. At stage 18, which is shortly following the formation of the limb bud, the expression of GHox-7 is considerably reduced (about 3-fold lower) in the mesoderm of limbless mutant limb buds compared to normal limb bud mesoderm. By stages 20 and 21, as the limb buds of limbless embryos cease outgrowth, GHox-7 expression in limbless mesoderm declines to very low levels, whereas GHox-7 expression increases in the mesoderm of normal limb buds which are undergoing outgrowth. In contrast to GHox-7, expression of GHox-8 in limbless mesoderm at stage 18 is quantitatively similar to its expression in normal limb bud mesoderm, and in limbless and normal mesoderm GHox-8 expression is highly localized in the anterior mesoderm of the limb bud. In normal limb buds, GHox-8 is also expressed in high amounts by the apical ectodermal ridge.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 41 (7) ◽  
pp. 1093-1098 ◽  
Author(s):  
S Lee ◽  
E Stollar ◽  
E Wang

Elongation factor-1 alpha (EF-1 alpha) is a ubiquitous, highly conserved protein that functions in peptide elongation during mRNA translation. We recently reported that, as do lower species, mammals also contain a second EF-1 alpha-like gene (S1). Unlike EF-1 alpha, which is present in all tissues, S1 mRNA is detected only in brain, heart, and muscle by Northern analysis and RNAse protection assays. In this report we present the identification of S1 and EF-1 alpha messages by non-radioactive in situ hybridization in brain and liver. We show that with this technique we can detected S1 mRNA only in certain cells in brain, mostly neurons; on the other hand, EF-1 alpha is present in all cell types that we have studied so far. We demonstrate that although EF-1 alpha mRNA can be detected in S1-negative cells it is also present in high abundance in S1-positive cells. The results presented here correlate with our previous finding that mammalian species contain a tissue-specific EF-1 alpha-like gene, S1. The presence of a second EF-1 alpha-like transcript within fully differentiated cells suggests a novel cell type-specific gene expression whose function may be related to the permanent growth-arrested state of cells in brain, heart, and muscle.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Y. Yokouchi ◽  
K. Ohsugi ◽  
H. Sasaki ◽  
A. Kuroiwa

A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 397-407 ◽  
Author(s):  
P.T. Sharpe ◽  
J.R. Miller ◽  
E.P. Evans ◽  
M.D. Burtenshaw ◽  
S.J. Gaunt

A homeobox-containing clone has been isolated from an adult mouse kidney cDNA library and shown by DNA sequence analysis to be a new isolate, Hox-6.1. A genomic clone containing Hox-6.1 has been isolated and found to contain another putative homeobox sequence (Hox-6.2), within 7 kb of Hox-6.1. In situ hybridization of mouse metaphase chromosomes shows this Hox-6 locus to be located on chromosome 14 (14E2). Hox-6.1 has been studied in detail and the predicted protein sequence of the homeobox is 100% homologous to the Xenopus Xeb1 (formally AC1) homeobox and the human c8 homeobox (Carrasco et al. 1984; Boncinelli et al. 1985; Simeone et al. 1987). Southern blotting shows that the DNA sequence encoding Hox-6.1 is single copy. Expression of Hox-6.1 has been studied in adult tissues and embryos by RNase protection assays, Northern blotting analysis and in situ hybridization. RNase protection assays show that Hox-6.1 transcripts are present in embryos between days 9 1/2 and 13 1/2 of gestation and in extraembryonic tissues at day 9 1/2. Adult expression is detectable in kidney and testis but not in liver, spleen and brain. One major transcript is detectable on Northern blots of kidney and day-13 1/2 embryo RNA. In kidney, this transcript is 2.7 kb whereas in embryos the major transcript is smaller at 1.9 kb, a much fainter band being visible at 2.7 kb. Localized expression of Hox-6.1 is observed in the spinal cord and prevertebral column of day-12 1/2 embryos, and in the posterior mesoderm and ectoderm of day-8 1/4 embryos. An anterior boundary of expression is located just behind the hindbrain whereas the boundary in the mesoderm is located at the level of the 7th prevertebra.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2008 ◽  
Vol 36 (3) ◽  
pp. 540-542 ◽  
Author(s):  
Carine Barreau ◽  
Elizabeth Benson ◽  
Helen White-Cooper

Post-meiotic transcription is widespread in mammalian spermatogenesis, but is generally believed to be absent from Drosophila spermatogenesis. Genes required during meiosis, in early spermatids or later in spermiogenesis are typically transcribed in primary spermatocytes in Drosophila. Their mRNAs are then stored in the cytoplasm until the protein product is needed. Recently, using in situ hybridization, we identified 17 Drosophila genes, collectively named ‘comets’ and ‘cups’, whose mRNAs are most abundant in, and localize to the distal ends of, elongating spermatids. Using a single-cyst quantitative RT–PCR (reverse transcription–PCR) assay, we confirmed this unusual expression pattern and conclusively demonstrate the existence of post-meiotic transcription in Drosophila spermatids. We found that transcription of comets and cups occurs just before protamines can be detected in spermatid nuclei.


Sign in / Sign up

Export Citation Format

Share Document