The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers

Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 983-992 ◽  
Author(s):  
A. Alberga ◽  
J.L. Boulay ◽  
E. Kempe ◽  
C. Dennefeld ◽  
M. Haenlin

The zygotic effect gene snail (sna) encodes a zinc-finger protein required for mesoderm formation in Drosophila embryos. By in situ analysis, sna transcripts are first detected at syncytial blastoderm and persist until very late stages of embryogenesis. Expression of sna is transient and is observed in tissues derived from all three germ layers. Prior to germband elongation, sna RNA accumulation is consistent with its genetically determined role in mesoderm formation. Starting at germband elongation, a second phase of sna expression appears to be initiated, characterized by a highly dynamic accumulation of transcripts in the developing central and peripheral nervous systems. Translation of sna RNA is apparently delayed as the sna protein is not detected before the onset of gastrulation. Its regional distribution generally correlates with that of sna transcripts. The complex pattern of sna expression strongly suggests that the function of the gene is not restricted to mesoderm formation.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 822
Author(s):  
Grzegorz Mlostoń ◽  
Jakub Wręczycki ◽  
Katarzyna Urbaniak ◽  
Dariusz M. Bieliński ◽  
Heinz Heimgartner

Fluoride anion was demonstrated as a superior activator of elemental sulfur (S8) to perform sulfurization of thioketones leading to diverse sulfur-rich heterocycles. Due to solubility problems, reactions must be carried out either in THF using tetrabutylammonium fluoride (TBAF) or in DMF using cesium fluoride (CsF), respectively. The reactive sulfurizing reagents are in situ generated, nucleophilic fluoropolysulfide anions FS(8−x)−, which react with the C=S bond according to the carbophilic addition mode. Dithiiranes formed thereby, existing in an equilibrium with the ring-opened form (diradicals/zwitterions) are key-intermediates, which undergo either a step-wise dimerization to afford 1,2,4,5-tetrathianes or an intramolecular insertion, leading in the case of thioxo derivatives of 2,2,4,4-tetramethylcyclobutane-1,3-dione to ring enlarged products. In reactions catalyzed by TBAF, water bounded to fluoride anion via H-bridges and forming thereby its stable hydrates is involved in secondary reactions leading, e.g., in the case of 2,2,4,4-tetramethyl-3-thioxocyclobutanone to the formation of some unexpected products such as the ring enlarged dithiolactone and ring-opened dithiocarboxylate. In contrast to thioketones, the fluoride anion catalyzed sulfurization of their α,β-unsaturated analogues, i.e., thiochalcones is slow and inefficient. However, an alternative protocol with triphenylphosphine (PPh3) applied as a catalyst, offers an attractive approach to the synthesis of 3H-1,2-dithioles via 1,5-dipolar electrocyclization of the in situ-generated α,β-unsaturated thiocabonyl S-sulfides. All reactions occur under mild conditions and can be considered as attractive methods for the preparation of sulfur rich heterocycles with diverse ring-size.


1999 ◽  
Vol 564 ◽  
Author(s):  
P. W. DeHaven ◽  
K. P. Rodbell ◽  
L. Gignac

AbstractThe effectiveness of a TiN capping layer to prevent the conversion of α-titantium to titanium nitride when annealed in a nitrogen ambient has been studied over the temperature range 300–700°C using in-situ high temperature diffraction and transmission electron microscopy. Over the time range of interest (four hours), no evidence of Ti reaction was observed at 300°C. At 450°C. nitrogen was found to diffuse into the Ti to form a Ti(N) solid solution. Above 500°C the titanium is transformed to a second phase: however this reaction follows two different kinetic paths, depending on the annealing temperature. Below 600°C. the reaction proceeds in two stages, with the first stage consisting of Ti(N) formation, and the second stage consisting of the conversion of the Ti(N) with a transformation mechanism characteristic of short range diffusion (grain edge nucleation). Above 600°C, a simple linear transformation rate is observed.


2016 ◽  
Vol 12 ◽  
pp. 2588-2601 ◽  
Author(s):  
Vladimir A Stepchenko ◽  
Anatoly I Miroshnikov ◽  
Frank Seela ◽  
Igor A Mikhailopulo

The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. 4SUra revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2’-deoxy-2-thiouridine (2SUd) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, 2SU, 2SUd, 4STd and 2STd are good substrates for both UP and TP; moreover, 2SU, 4STd and 2’-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of 2SUra and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave 2SUd and 2’-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed.


1996 ◽  
Vol 72 (4) ◽  
pp. 297-298 ◽  
Author(s):  
K. Kas ◽  
I. Wlodarska ◽  
E. Meyen ◽  
H. Van den Berghe ◽  
W.J.M. Van deVen

2012 ◽  
Vol 9 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
M. Barlett ◽  
K. Zhuang ◽  
R. Mahadevan ◽  
D. Lovley

Abstract. Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.


2021 ◽  
Vol 15 (6) ◽  
pp. 95-100
Author(s):  
S. O. Salugina ◽  
E. S. Fedorov

Autoinflammatory diseases (AIDs) are a heterogeneous group of rare genetically determined conditions, the main manifestations of which are episodes of fever in combination with other signs of systemic inflammation: skin rashes, musculoskeletal and neurological disorders, damage to the organs of vision, hearing, etc., as well as acute phase markers and the absence of autoantibodies. The use of biological therapy, especially inhibitors of interleukin 1 (iIL1), in most common monogenic AIDs (mAID) – FMF, TRAPS, HIDS/MKD, CAPS – has shown its high efficiency and led to significant progress in the treatment of these patients. Currently, iIL1 are the first-line drugs for mAIDs therapy, primarily CAPS. In the case of their ineffectiveness or intolerance in certain situations, other biologic disease-modifying antirheumatic drugs can also be used – inhibitors of tumor necrosis factor α and iIL6, but this issue needs further investigation. The article describes a patient with mAID, in whom the diagnosis was made more than 40 years after the onset; administration of targeted therapy even in the late stages of the disease led to a significant improvement in many symptoms and quality of life. 


Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 711-720 ◽  
Author(s):  
H.V. Isaacs ◽  
D. Tannahill ◽  
J.M. Slack

We have cloned and sequenced a new member of the fibroblast growth factor family from Xenopus laevis embryo cDNA. It is most closely related to both mammalian kFGF (FGF-4) and FGF-6 but as it is not clear whether it is a true homologue of either of these genes we provisionally refer to it as XeFGF (Xenopus embryonic FGF). Two sequences were obtained, differing by 11% in derived amino acid sequence, which probably represent pseudotetraploid variants. Both the sequence and the behaviour of in vitro translated protein indicates that, unlike bFGF (FGF-2), XeFGF is a secreted molecule. Recombinant XeFGF protein has mesoderm-inducing activity with a specific activity similar to bFGF. XeFGF mRNA is expressed maternally and zygotically with a peak during the gastrula stage. Both probe protection and in situ hybridization showed that the zygotic expression is concentrated in the posterior of the body axis and later in the tailbud. Later domains of expression were found near the midbrain/hindbrain boundary and at low levels in the myotomes. Because of its biological properties and expression pattern, XeFGF is a good candidate for an inducing factor with possible roles both in mesoderm induction at the blastula stage and in the formation of the anteroposterior axis at the gastrula stage.


Development ◽  
1974 ◽  
Vol 32 (2) ◽  
pp. 445-459
Author(s):  
B. Levak-Švajger ◽  
A. Švajger

Single germ layers (or combinations of two of them) were isolated from the primitive streak and the head-fold stage rat embryos and grown for 15 days under the kidney capsule of syngeneic adult animals. The resulting teratomas were examined histologically for the presence of mature tissues, with special emphasis on derivatives of the primitive gut. Ectoderm isolated together with the initial mesodermal wings at the primitive streak stage gave rise to tissue derivatives of all three definitive germ layers. Derivatives of the primitive gut were regularly present in these grafts. At the head-fold stage, isolated ectoderm (including the region of the primitive streak) differentiated into ectodermal and mesodermal derivatives only. Endoderm isolated at the primitive streak stage did not develop when grafted and was always completely resorbed. At the head-fold stage, however, definitive endoderm differentiated into derivatives of the primitive gut if grafted together with adjacent mesoderm. These findings indirectly suggest the migration of prospective endodermal cells from the primitive ectoderm, and therefore a general analogy with the course of events during gastrulation in the chick blastoderm.


Sign in / Sign up

Export Citation Format

Share Document