Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 241-253 ◽  
Author(s):  
T. Meier ◽  
F. Chabaud ◽  
H. Reichert

To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.

Development ◽  
1998 ◽  
Vol 125 (10) ◽  
pp. 1845-1856 ◽  
Author(s):  
C.A. Dye ◽  
J.K. Lee ◽  
R.C. Atkinson ◽  
R. Brewster ◽  
P.L. Han ◽  
...  

Notch signaling is required in many invertebrate and vertebrate cells to promote proper cell fate determination. Mutations in sanpodo cause many different neuronal peripheral nervous system precursor cells to generate two identical daughter neurons, instead of a neuron and sibling cell. This phenotype is similar to that observed when Notch function is lost late in embryonic development and opposite to the numb loss-of-function phenotype. Genetic interaction studies show that sanpodo is epistatic to numb. sanpodo encodes a homolog of tropomodulin, an actin/tropomyosin-associated protein. Loss of sanpodo leads to an aberrant F-actin distribution and causes differentiation defects of actin-containing sensory structures. Our data suggest that an actin-based process is involved in Notch signaling.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2020 ◽  
Vol 318 (3) ◽  
pp. F531-F543 ◽  
Author(s):  
Marcelo D. Carattino ◽  
Nicolas Montalbetti

Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.


2017 ◽  
Author(s):  
Kim I Chisholm ◽  
Nikita Khovanov ◽  
Douglas M Lopes ◽  
Federica La Russa ◽  
Stephen B McMahon

AbstractGreater emphasis on the study of intact cellular networks in their physiological environment has led to rapid advances in intravital imaging in the central nervous system, while the peripheral system remains largely unexplored. To assess large networks of sensory neurons we selectively label primary afferents with GCaMP6s and visualise their functional responses in vivo to peripheral stimulation. We show that we are able to monitor simultaneously the activity of hundreds of sensory neurons with sensitivity sufficient to detect, in most cases, single action potentials with a typical rise time of around 200 milliseconds, and an exponential decay with a time constant of approximately 700 milliseconds. Using this sensitive technique we are able to show that large scale recordings demonstrate the recently disputed polymodality of nociceptive primary afferents with between 40-80% of thermally sensitive DRG neurons responding also to noxious mechanical stimulation. We also specifically assess the small population of peripheral cold fibres and demonstrate significant sensitisation to cooling after a model of sterile and persistent inflammation, with significantly increased sensitivity already at decreases of 5°C when compared to uninflamed responses. This not only reveals interesting new insights into the (patho)physiology of the peripheral nervous system but also demonstrates the sensitivity of this imaging technique to physiological changes in primary afferents.Significance StatementMost of our functional understanding of the peripheral nervous system has come from single unit recordings. However, the acquisition of such data is labour-intensive and usually ‘low yield’. Moreover, some questions are best addressed by studying populations of neurons. To this end we report on a system that monitors activity in hundreds of single sensory neurons simultaneously, with sufficient sensitivity to detect in most cases single action potentials. We use this technique to characterise nociceptor properties and demonstrate polymodality in the majority of neurons and their sensitization under inflammatory conditions. We therefore believe this approach will be very useful for the studies of the somatosensory system in general and pain in particular.


2020 ◽  
Author(s):  
Yisheng Liu ◽  
Xiaosong Gu

AbstractAlthough postnatal neurogenesis has been discovered in some regions of the peripheral nervous system (PNS), only indirect evidences indicated that some progenitors in the adult sciatic nerve and dorsal root ganglion (DRG) serve as a source of newly born sensory neurons. Here, we report the discovery of neurons and neuronal stem cells in the adult rat sciatic nerve. Lineage tracing detected a population of sciatic nerve neurons as progeny of adult neuronal stem cells. With the further finding of labeled DRG neurons in adult transgenic rats with local sciatic nerve staining, we propose a model of adult neurogenesis in the sciatic nerve in which neuronal stem cells in sciatic nerve mature as sensory neurons in adults along the sciatic nerve to DRG. This hypothesis provides a new way to understand sensory formation in adults. Those neuronal stem cells in the sciatic nerve may help to therapy of nerve trauma and disease in the future.


Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S. Vincent ◽  
J.L. Vonesch ◽  
A. Giangrande

Glial cells constitute the second component of the nervous system and are important during neuronal development. In this paper we describe a gene, glial cell deficient, (glide), that is necessary for glial cell fate commitment in Drosophila melanogaster. Mutations at the glide locus prevent glial cell determination in the embryonic central and peripheral nervous system. Moreover, we show that the absence of glial cells is the consequence of a cell fate switch from glia to neurones. This suggests the existence of a multipotent precursor cells in the nervous system. glide mutants also display defects in axonal navigation, which confirms and extends previous results indicating a role for glial cells in these processes.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 979-991 ◽  
Author(s):  
V Subramaniam ◽  
H M Bomze ◽  
A J López

Abstract The homeotic selector gene Ultrabithorax (Ubx) specifies regional identities in multiple tissues within the thorax and abdomen of Drosophila melanogaster. Ubx encodes a family of six developmentally specific homeodomain protein isoforms translated from alternatively spliced mRNAs. The mutant allele Ubx195 contains a stop codon in exon mII, one of three differential elements, and consequently produces functional UBX protein only from mRNAs of type IVa and IVb, which are expressed mainly in the central nervous system. Although it retains activity for other processes, Ubx195 behaves like a null allele with respect to development of the peripheral nervous system, indicating that UBX-IVa and IVb alone do not contribute detectable Ubx function for this tissue. The mutant allele UbxMX17 contains an inversion of exon mII. We find that this allele only produces mRNAs of type IVa, but the expression pattern of the resulting UBX-IVa protein is indistinguishable from that of total UBX protein expression in wild-type embryos. The phenotype of homozygous UbxMX17 embryos indicates that UBX-IVa cannot substitute functionally for other isoforms to promote normal development of the peripheral nervous system. This functional limitation is confirmed by a detailed analysis of the peripheral nervous system in embryos that express specific UBX isoforms ectopically under control of a heat shock promoter. Additional observations suggest that UBX isoforms also differ in their ability to function in other tissues.


Sign in / Sign up

Export Citation Format

Share Document