Engrailed expression in the anterior lineage compartment of the developing wing blade of Drosophila

Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 21-33 ◽  
Author(s):  
S.S. Blair

The developing wing of Drosophila melanogaster was examined at larval and pupal stages of development to determine whether the anterior-posterior lineage boundary, as identified by lineage restrictions, was congruent with the boundaries defined by the expression of posterior-specific (engrailed, invected), and anterior-specific (cubitus interruptus-D) genes. The lineage boundary was identified by marking mitotic recombinant clones, using an enhancer trap line with ubiquitous beta-gal expression in imaginal tissues; clones of +/+ cells were identified by their lack of beta-gal expression. Domains of gene expression were localized using antibodies and gene specific lacZ constructs. Surprisingly, it was found that engrailed expression extended a small distance into the anterior lineage compartment of the wing blade, as identified with anti-en/inv mAb, anti-en polyclonal antiserum, or an en-promoter-lacZ insert, ryxho25. This anterior expression was not present in early third instar discs, but appeared during subsequent larval and pupal development. In contrast, the expression of cubitus interruptus-D, as identified using the ci-Dplac insert, appeared to be limited to the anterior lineage compartment. Thus, en expression is not limited to cells from the posterior lineage compartment, and en and ci-D activities can overlap in a region just anterior to the lineage compartment boundary in the developing wing. The lineage boundary could also be identified by a line of aligned cells in the prospective wing blade region of wandering third instar discs. A decapentaplegic-lacZ construct was expressed in a stripe several cells anterior to the lineage boundary, and did not define or overlap into the posterior lineage compartment.

Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1144-1149
Author(s):  
Jesper Kronhamn ◽  
Åsa Rasmuson-Lestander

The genes cubitus interruptus (ci), ribosomal protein S3A (RpS3A), and pangolin (pan) are localized within 73 kb in the cytological region 101F-102A on chromosome IV in Drosophila melanogaster. A region of 13 kb harbours the regulatory regions of both ci and pan, transcribed in opposite directions, and a 1.1-kb gene encoding RpS3A. This dense clustering gives rise to very complicated complementation patterns between different alleles in these loci. We investigated this region genetically and molecularly by use of an enhancer trap line (IA5), where the P-element was found to be inserted into the first intron of pan. Screens for imprecise excisions of the P-element were performed, and complementations between new and old established mutant lines were investigated. We found that when mutated or deleted the RpS3A gene gives rise to a Minute phenotype, and we conclude that M(4)101 encodes the ribosomal protein S3A.Key words: Drosophila melanogaster, Minute(4)101, ribosomal protein, RpS3A gene, P-element mutagenesis.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4053-4063 ◽  
Author(s):  
S.S. Blair ◽  
A. Ralston

It is thought that the posterior expression of the ‘selector’ genes engrailed and invected control the subdivision of the growing wing imaginal disc of Drosophila into anterior and posterior lineage compartments. At present, the cellular mechanisms by which separate lineage compartments are maintained are not known. Most models have assumed that the presence or absence of selector gene expression autonomously drives the expression of compartment-specific adhesion or recognition molecules that inhibit intermixing between compartments. However, our present understanding of Hedgehog signalling from posterior to anterior cells raises some interesting alternative models based on a cell's response to signalling. We show here that anterior cells that lack smoothened, and thus the ability to receive the Hedgehog signal, no longer obey a lineage restriction in the normal position of the anterior-posterior boundary. Rather these clones extend into anatomically posterior territory, without any changes in engrailed/invected gene expression. We have also examined clones lacking both en and inv; these too show complex behaviors near the normal site of the compartment boundary, and do not always cross entirely into anatomically anterior territory. Our results suggest that compartmentalization is a complex process involving intercompartmental signalling; models based on changes in affinity or growth will be discussed.


2018 ◽  
Author(s):  
Heike Rudolf ◽  
Christine Zellner ◽  
Ezzat El-Sherif

AbstractRecently, it was shown that anterior-posterior patterning genes in the red flour beetle Tribolium castaneum are expressed sequentially in waves. However, in the fruit fly Drosophila melanogaster, an insect with a derived mode of embryogenesis compared to Tribolium, anterior-posterior patterning genes quickly and simultaneously arise as mature gene expression domains that, afterwards, undergo slight posterior-to-anterior shifts. This raises the question of how a fast and simultaneous mode of patterning, like that of Drosophila, could have evolved from a rather slow sequential mode of patterning, like that of Tribolium. In this paper, we elucidate a mechanism for this evolutionary transition based on a switch from a uniform to a gradient-mediated initialization of the gap gene cascade by maternal Hb. The model is supported by computational analyses and experiments.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 67-77 ◽  
Author(s):  
J. Fernandes ◽  
M. Bate ◽  
K. Vijayraghavan

We have followed the pupal development of the indirect flight muscles (IFMs) of Drosophila melanogaster. At the onset of metamorphosis larval muscles start to histolyze, with the exception of a specific set of thoracic muscles. Myoblasts surround these persisting larval muscles and begin the formation of one group of adult indirect flight muscles, the dorsal longitudinal muscles. We show that the other group of indirect flight muscles, the dorsoventral muscles, develops simultaneously but without the use of larval templates. By morphological criteria and by patterns of specific gene expression, our experiments define events in IFM development.


2013 ◽  
Vol 203 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Zhao Zhang ◽  
Jing Feng ◽  
Chenyu Pan ◽  
Xiangdong Lv ◽  
Wenqing Wu ◽  
...  

The evolutionarily conserved Hedgehog (Hh) signaling pathway is transduced by the Cubitus interruptus (Ci)/Gli family of transcription factors that exist in two distinct repressor (CiR/GliR) and activator (CiA/GliA) forms. Aberrant activation of Hh signaling is associated with various human cancers, but the mechanism through which CiR/GliR properly represses target gene expression is poorly understood. Here, we used Drosophila melanogaster and zebrafish models to define a repressor function of Atrophin (Atro) in Hh signaling. Atro directly bound to Ci through its C terminus. The N terminus of Atro interacted with a histone deacetylase, Rpd3, to recruit it to a Ci-binding site at the decapentaplegic (dpp) locus and reduce dpp transcription through histone acetylation regulation. The repressor function of Atro in Hh signaling was dependent on Ci. Furthermore, Rerea, a homologue of Atro in zebrafish, repressed the expression of Hh-responsive genes. We propose that the Atro–Rpd3 complex plays a conserved role to function as a CiR corepressor.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4065-4071 ◽  
Author(s):  
S. Staab ◽  
A. Heller ◽  
M. Steinmann-Zwicky

In Drosophila, the enhancer-trap line mgm1 is already specifically expressed in male germ cells. Staining is first detected in 10-hour-old embryos and it is found in later stem cells. This line, which reveals the earliest sex-specific gene expression in the germline known so far, is a useful molecular marker to assess the sexual pathway that germ cells have entered before any overt sexual dimorphism is apparent. XY germ cells that develop in feminized animals express mgm1, which shows that this marker is autonomously expressed in XY germ cells. However, XX germ cells that develop in masculinized animals also express mgm1. Therefore, somatic sex-determining signals have already acted on XX germ cells in 10-hour-old embryos.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Jianzhi Zhang ◽  
Masatoshi Nei

Antennapedia (Antp)-class homeobox genes are involved in the determination of pattern formation along the anterior-posterior axis of the animal embryo. A phylogenetic analysis of Antp-class homeodomains of the nematode, Drosophila, amphioxus, mouse, and human indicates that the 13 cognate group genes of this gene family can be divided into two major groups, i.e., groups I and II. Group I genes can further be divided into subgroups A (cognate groups 1–2), B (cognate group 3), and C (cognate groups 4–8), and group II genes can be divided into subgroups D (cognate groups 9–10) and E (cognate groups 11–13), though this classification is somewhat ambiguous. Evolutionary distances among different amino acid sequences suggest that the divergence between group I and group II genes occurred ∼1000 million years (MY) ago, and the five different subgroups were formed by ∼600 MY ago, probably before the divergence of Pseudocoelomates (e.g., nematodes) and Coelomates (e.g., insects and chordates). Our results show that the genes that are phylogenetically close are also closely located in the chromosome, suggesting that the colinearity between the gene expression and gene arrangement was generated by successive tandem gene duplications and that the gene arrangement has been maintained by some sort of selection.


Sign in / Sign up

Export Citation Format

Share Document