scholarly journals A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate

Development ◽  
2015 ◽  
Vol 142 (3) ◽  
pp. 587-596 ◽  
Author(s):  
M. V. Staller ◽  
C. C. Fowlkes ◽  
M. D. J. Bragdon ◽  
Z. Wunderlich ◽  
J. Estrada ◽  
...  
2014 ◽  
Author(s):  
Max V Staller ◽  
Charless C Fowlkes ◽  
Meghan D.J. Bragdon ◽  
Zeba B. Wunderlich ◽  
Angela DePace

In developing embryos, gene regulatory networks canalize cells towards discrete terminal fates. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos depleted of a key maternal input, bicoid (bcd), by building a cellular- resolution gene expression atlas containing measurements of 12 core patterning genes over 6 time points in early development. With this atlas, we determine the precise perturbation each cell experiences, relative to wild type, and observe how these cells assume cell fates in the perturbed embryo. The first zygotic layer of the network, consisting of the gap and terminal genes, is highly robust to perturbation: all combinations of transcription factor expression found in bcd depleted embryos were also found in wild type embryos, suggesting that no new cell fates were created even at this very early stage. All of the gap gene expression patterns in the trunk expand by different amounts, a feature that we were unable to explain using two simple models of the effect of bcd depletion. In the second layer of the network, depletion of bcd led to an excess of cells expressing both even skipped and fushi tarazu early in the blastoderm stage, but by gastrulation this overlap resolved into mutually exclusive stripes. Thus, following depletion of bcd, individual cells rapidly canalize towards normal cell fates in both layers of this gene regulatory network. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further modeling of canalization in this transcriptional network.


Author(s):  
Michaela Asp ◽  
Stefania Giacomello ◽  
Daniel Fürth ◽  
Johan Reimegård ◽  
Eva Wärdell ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tiziano Flati ◽  
Silvia Gioiosa ◽  
Giovanni Chillemi ◽  
Andrea Mele ◽  
Alberto Oliverio ◽  
...  

AbstractStressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aliki Xanthopoulou ◽  
Javier Montero-Pau ◽  
Belén Picó ◽  
Panagiotis Boumpas ◽  
Eleni Tsaliki ◽  
...  

Abstract Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 939-946 ◽  
Author(s):  
J.B. Skeath ◽  
S.B. Carroll

The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5–7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.


Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 327-332 ◽  
Author(s):  
S.B. Carroll ◽  
G.M. Winslow ◽  
V.J. Twombly ◽  
M.P. Scott

At least 13 genes control the establishment of dorsoventral polarity in the Drosophila embryo and more than 30 genes control the anteroposterior pattern of body segments. Each group of genes is thought to control pattern formation along one body axis, independently of the other group. We have used the expression of the fushi tarazu (ftz) segmentation gene as a positional marker to investigate the relationship between the dorsoventral and anteroposterior axes. The ftz gene is normally expressed in seven transverse stripes. Changes in the striped pattern in embryos mutant for other genes (or progeny of females homozygous for maternal-effect mutations) can reveal alterations of cell fate resulting from such mutations. We show that in the absence of any of ten maternal-effect dorsoventral polarity gene functions, the characteristic stripes of ftz protein are altered. Normally there is a difference between ftz stripe spacing on the dorsal and ventral sides of the embryo; in dorsalized mutant embryos the ftz stripes appear to be altered so that dorsal-type spacing occurs on all sides of the embryo. These results indicate that cells respond to dorsoventral positional information in establishing early patterns of gene expression along the anteroposterior axis and that there may be more significant interactions between the different axes of positional information than previously determined.


2020 ◽  
Vol 102 (1) ◽  
pp. 165-177 ◽  
Author(s):  
Noe Fernandez‐Pozo ◽  
Fabian B. Haas ◽  
Rabea Meyberg ◽  
Kristian K. Ullrich ◽  
Manuel Hiss ◽  
...  

2016 ◽  
Vol 33 ◽  
pp. S156
Author(s):  
José Federico Sánchez Sevilla ◽  
José G. Vallarino ◽  
Sonia Osorio ◽  
Aureliano Bombarely ◽  
Katharina Merchante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document