Ectopic expression of seven-up causes cell fate changes during ommatidial assembly

Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1123-1135 ◽  
Author(s):  
Y. Hiromi ◽  
M. Mlodzik ◽  
S.R. West ◽  
G.M. Rubin ◽  
C.S. Goodman

During Drosophila ommatidial development, a single cell is selected within the ommatidial cluster to become the R7 photoreceptor neuron. The seven-up gene has been shown to play a role in this process by preventing four other photoreceptor precursors, R3/R4/R1/R6, from adopting the R7 cell fate. The seven-up gene encodes a steroid receptor-like molecule that is expressed only in those four cells that require seven-up function in the developing Drosophila ommatidium. We have examined the functional significance of the spatially restricted expression of seven-up by misexpressing seven-up isoforms. As expected from the function that seven-up performs in R3/R4/R1/R6, ubiquitous expression of seven-up causes transformation of the R7 cell to an R1-R6 cell fate. In addition, depending on the timing and spatial pattern of expression, various other phenotypes are produced including the loss of the R7 cell and the formation of extra R7 cells. Ubiquitous expression of seven-up close to the morphogenetic furrow interferes with R8 differentiation resulting in failure to express the boss protein, the ligand for the sevenless receptor tyrosine kinase, and the R7 cell is lost consequently. Extra R7 cells are formed by recruiting non-neuronal cone cells as photoreceptor neurons in a sevenless and bride of sevenless independent way. Thus, the spatiotemporal pattern of seven-up expression plays an essential role in controlling the number and cellular origin of the R7 neuron in the ommatidium. Our results also suggest that seven-up controls decisions not only between photoreceptor subtypes, but also between neuronal and non-neuronal fates.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1361-1372 ◽  
Author(s):  
S. Kramer ◽  
S.R. West ◽  
Y. Hiromi

Drosophila seven-up is an orphan receptor of the steroid receptor family that is required to specify photoreceptor neuron subtypes in the developing compound eye. Expression of seven-up is confined to four of the eight photoreceptor precursors, R3/R4/R1/R6. We show that misexpression of seven-up in any of the other cell types within the developing ommatidium interferes with their differentiation. Each cell type responds differently to seven-up misexpression. For example, ectopic expression in the non-neuronal cone cells using the sevenless promoter/enhancer (sev-svp) causes the cone cells to take on a neuronal identity. Ectopic expression of seven-up in R2/R5 using the rough enhancer (ro-svp) causes these neurons to lose aspects of their photoreceptor subtype identity while remaining neuronal. Each cell type appears to have a different developmental time window that is sensitive to misexpressed seven-up. The temporal order of responsiveness of each cell type to misexpressed seven-up is similar but not identical to the order of neuronal differentiation. This suggests that there are processes of specification that are distinct from the specification to become a photoreceptor neuron. We have identified members of the ras signaling pathway as suppressors of the cone cell to R7 neuron transformation caused by sev-svp. Suppression of the sev-svp phenotype can be achieved by decreasing the gene-dosage of any of the members of the ras-pathway. This suggests that the function of seven-up in the cone cells requires ras signaling. However, a decrease in ras signaling results in enhancement of the phenotype caused by the ro-svp transgene. We discuss the relationship between decisions controlled by seven-up and those controlled by ras signaling.



2017 ◽  
Author(s):  
Georg Wolfstetter ◽  
Kathrin Pfeifer ◽  
Jesper Ruben van Dijk ◽  
Fredrik Hugosson ◽  
Xiangyi Lu ◽  
...  

ABSTRACTIn Drosophila, the receptor tyrosine kinase Alk and its ligand Jeb are required to drive founder cell (FC) specification in the visceral mesoderm (VM). Alk-signalling activates downstream MAPK/ERK- and PI3K-pathways in human and Drosophila but little is known about immediate downstream signalling events. Here we report that the scaffolding protein Cnk interacts directly with Alk via a novel c-terminal binding motif. Cnk is required for Alk-signalling as ectopic expression of the minimal interaction motif as well as loss of maternal and zygotic cnk blocks visceral FC-formation, resembling the phenotype of jeb and Alk mutants. We also show that the Cnk-interactor Aveugle/Hyphen (Ave/HYP) is critical, while the (pseudo-) kinase Ksr is not required for Alk-signalling in the developing VM. Taken together, Cnk and Ave represent the first molecules downstream of Alk whose loss genocopies the lack of visceral FC-specification of Alk and jeb mutants indicating an essential role in Alk-signalling.



1993 ◽  
Vol 340 (1293) ◽  
pp. 273-278 ◽  

The specification of the R7 photoreceptor cell fate in the developing eye of Drosophila depends on the local activation of the sevenless (Sev) receptor tyrosine kinase by Boss, a protein expressed on the membrane of the neighbouring R8 cell. Constitutive activation of the Sev receptor results in a dosage-dependent increase in the number of R7 cells per ommatidium. Genetic screens have been used to identify mutations that alter the efficiency of signal transduction. Subsequent molecular characterization of the corresponding genes has led to the identification of a number of proteins involved in transducing the signal from the receptor to the nucleus. In contrast to the receptor and its ligand, these components are shared between different signal transduction pathways not only in Drosophila but are also homologous to components involved in signal transduction in other organisms.



Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 277-286
Author(s):  
Thomas P Neufeld ◽  
Amy H Tang ◽  
Gerald M Rubin

AbstractSpecification of the R7 photoreceptor cell in the developing Drosophila eye requires the seven in absentia (sina) gene. We demonstrate that ectopic expression of sina in all cells behind the morphogenetic furrow disrupts normal eye development during pupation, resulting in a severely disorganized adult eye. Earlier events of cell fate specification appear unaffected. A genetic screen for dominant enhancers and suppressors of this phenotype identified mutations in a number of genes required for normal eye development, including UbcD1, which encodes a ubiquitin conjugating enzyme; SR3-4a, a gene previously implicated in signaling downstream of Ras1; and a Drosophila homolog of the Sin3A transcriptional repressor.



Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 277-286 ◽  
Author(s):  
Thomas P Neufeld ◽  
Amy H Tang ◽  
Gerald M Rubin

Abstract Specification of the R7 photoreceptor cell in the developing Drosophila eye requires the seven in absentia (sina) gene. We demonstrate that ectopic expression of sina in all cells behind the morphogenetic furrow disrupts normal eye development during pupation, resulting in a severely disorganized adult eye. Earlier events of cell fate specification appear unaffected. A genetic screen for dominant enhancers and suppressors of this phenotype identified mutations in a number of genes required for normal eye development, including UbcD1, which encodes a ubiquitin conjugating enzyme; SR3-4a, a gene previously implicated in signaling downstream of Ras1; and a Drosophila homolog of the Sin3A transcriptional repressor.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xueer Wang ◽  
Honghai Zhang ◽  
Zhugui Shao ◽  
Wanxin Zhuang ◽  
Chao Sui ◽  
...  

AbstractSpleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which plays an essential role in both innate and adaptive immunity. However, the key molecular mechanisms that regulate SYK activity are poorly understood. Here we identified the E3 ligase TRIM31 as a crucial regulator of SYK activation. We found that TRIM31 interacted with SYK and catalyzed K27-linked polyubiquitination at Lys375 and Lys517 of SYK. This K27-linked polyubiquitination of SYK promoted its plasma membrane translocation and binding with the C-type lectin receptors (CLRs), and also prevented the interaction with the phosphatase SHP-1. Therefore, deficiency of Trim31 in bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) dampened SYK-mediated signaling and inhibited the secretion of proinflammatory cytokines and chemokines against the fungal pathogen Candida albicans infection. Trim31−/− mice were also more sensitive to C. albicans systemic infection than Trim31+/+ mice and exhibited reduced Th1 and Th17 responses. Overall, our study uncovered the pivotal role of TRIM31-mediated K27-linked polyubiquitination on SYK activation and highlighted the significance of TRIM31 in anti-C. albicans immunity.



2010 ◽  
Vol 30 (15) ◽  
pp. 5242-5252 ◽  
Author(s):  
J. E. Brown ◽  
S. L. H. Zeiger ◽  
J. C. Hettinger ◽  
J. D. Brooks ◽  
B. Holt ◽  
...  


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 225-235 ◽  
Author(s):  
G. Begemann ◽  
A.M. Michon ◽  
L. vd Voorn ◽  
R. Wepf ◽  
M. Mlodzik

The Drosophila seven-up (svp) gene specifies outer photoreceptor cell fate in eye development and encodes an orphan nuclear receptor with two isoforms. Transient expression under the sevenless enhancer of either svp isoform leads to a dosage-dependent transformation of cone cells into R7 photoreceptors, and at a lower frequency, R7 cells into outer photoreceptors. To investigate the cellular pathways involved, we have taken advantage of the dosage sensitivity and screened for genes that modify this svp-induced phenotype. We show that an active Ras pathway is essential for the function of both Svp isoforms. Loss-of-function mutations in components of the Ras signal transduction cascade act as dominant suppressors of the cone cell transformation, whilst loss-of-function mutations in negative regulators of Ras-activity act as dominant enhancers. Furthermore, Svp-mediated transformation of cone cells to outer photoreceptors, reminiscent of its wild-type function in specifying R3/4 and R1/6 identity, requires an activated Ras pathway in the same cells, or alternatively dramatic increase in ectopic Svp protein levels. Our results indicate that svp is only fully functional in conjunction with activated Ras. Since we find that mutations in the Egf-receptor are also among the strongest suppressors of svp-mediated cone cell transformation, we propose that the Ras activity in cone cells is due to low level Egfr signaling. Several models that could account for the observed svp regulation by the Ras pathway are discussed.



Development ◽  
2001 ◽  
Vol 128 (12) ◽  
pp. 2243-2253 ◽  
Author(s):  
Muriel Grammont ◽  
Kenneth D. Irvine

fringe encodes a glycosyltransferase that modulates the ability of the Notch receptor to be activated by its ligands. We describe studies of fringe function during early stages of Drosophila oogenesis. Animals mutant for hypomorphic alleles of fringe contain follicles with an incorrect number of germline cells, which are separated by abnormally long and disorganized stalks. Analysis of clones of somatic cells mutant for a null allele of fringe localizes the requirement for fringe in follicle formation to the polar cells, and demonstrates that fringe is required for polar cell fate. Clones of cells mutant for Notch also lack polar cells and the requirement for Notch in follicle formation appears to map to the polar cells. Ectopic expression of fringe or of an activated form of Notch can generate an extra polar cell. Our results indicate that fringe plays a key role in positioning Notch activation during early oogenesis, and establish a function for the polar cells in separating germline cysts into individual follicles.



1995 ◽  
Vol 7 (11) ◽  
pp. 1773 ◽  
Author(s):  
Takashi Aoyama ◽  
Chun-Hai Dong ◽  
Yan Wu ◽  
Monica Carabelli ◽  
Giovanna Sessa ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document