Interactions between primordial germ cells play a role in their migration in mouse embryos

Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 135-141 ◽  
Author(s):  
M. Gomperts ◽  
M. Garcia-Castro ◽  
C. Wylie ◽  
J. Heasman

Primordial germ cells (PGCs) are the founder cell population of the gametes which form during the sexually mature stage of the life cycle. In the mouse, they arise early in embryogenesis, first becoming visible in the extraembryonic mesoderm, posterior to the primitive streak, at 7.5 days post coitum (d.p.c.). They subsequently become incorporated into the epithelium of the hind gut, from which they emigrate (9.5 d.p.c.) and move first into the dorsal mesentery (10.5 d.p.c.), and then into the genital ridges that lie on the dorsal body wall (11.5 d.p.c.). We have used confocal microscopy to study PGCs stained with an antibody that reacts with a carbohydrate antigen (Stage-Specific Embryonic Antigen-1, SSEA-1) carried on the PGC surface. This allows the study of the whole PGC surface, at different stages of their migration. The appearance of PGCs in tissue sections has given rise to the conventional view that they migrate as individuals, each arriving in turn at the genital ridge. In this paper, we show that PGCs leave the hind gut independently, but then extend long (up to 40 microns) processes, with which they link up to each other to form extensive networks. During the 10.5-11.5 d.p.c. period, these networks of PGCs aggregate into groups of tightly apposed cells in the genital ridges. As this occurs, their processes are lost, and their appearance suggests they are now non-motile. Furthermore, we find that PGCs taken from the dorsal mesentery at 10.5 d.p.c. perform the same sequence of movements in culture.(ABSTRACT TRUNCATED AT 250 WORDS)

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2769-2778 ◽  
Author(s):  
Y. Saga ◽  
N. Hata ◽  
S. Kobayashi ◽  
T. Magnuson ◽  
M.F. Seldin ◽  
...  

A subtractive hybridization strategy was used to isolate putative genes involved in the development of mouse primordial germ cells (PGC). Complimentary DNA was amplified on RNA isolated from the base of the allantois where PGC are located in the 7.5 days post coitum (dpc) mouse embryo. It was then subtracted by hybridization with cDNA amplified on RNA of the anterior region where PGC are absent. A novel gene thus isolated is designated as Mesp1 and encodes a possible transcription factor MesP1 containing a basic helix-loop-helix motif. Its earliest expression was observed at the onset of gastrulation, as early as 6.5 dpc, in the nascent mesodermal cells that first ingressed at the end of the primitive streak. These expressing cells in the lateral and extraembryonic mesoderm showed a wing-shaped distribution. Its initial expression was soon down-regulated at 7.5 dpc before the completion of gastrulation, except at the proximal end of the primitive streak which included the extraembryonic mesoderm and the base of allantois. At 8 dpc, the expression at the base of the allantois moved laterally. This distribution between 7.0 and 8.0 dpc was similar to that of PGC detected by the alkaline phosphatase activity. However, the expression of Mesp1 was down-regulated thereafter, when PGC entered in the migration stage. After birth, Mesp1 expression was detected only in mature testes, but in a different isoform from that expressed in the embryo. Mesp1 was mapped to the mid region of chromosome 7, near the mesodermal deficiency gene (mesd). However, a Southern hybridization study clearly showed that Mesp1 was distinctly different from mesd. The amino acid sequence and its expression pattern suggest that MesP1 plays an important role in the development of the nascent mesoderm including PGC.


Development ◽  
1990 ◽  
Vol 110 (2) ◽  
pp. 521-528 ◽  
Author(s):  
M. Ginsburg ◽  
M.H. Snow ◽  
A. McLaren

With the aid of a whole-mount technique, we have detected a small cluster of alkaline phosphatase (ALP)-positive cells in whole mounts of mid-primitive-streak-stage embryos, 7–7 1/4 days post coitum (dpc). Within the cluster, about 8 cells contain a small cytoplasmic spot, intensely stained for ALP activity and possibly associated with an active Golgi complex. The cluster lies just posterior to the definitive primitive streak in the extraembryonic mesoderm, separated from the embryo by the amniotic fold. Towards the end of gastrulation, the number of cells containing the ALP-positive spot rises to between 50 and 80. Thereafter the number of cells in the extraembryonic cluster declines, and similar cells start to be seen in the mesoderm of the primitive streak and then in the endoderm. At 8 dpc, about 125 ALP-stained cells are found, mainly in the hindgut endoderm and also at the base of the allantois, their appearance and location at this stage agreeing closely with previous reports on primordial germ cells (PGCs). Embryos from which the cluster area has been removed at the 7-day stage are devoid of PGCs after culture for 48 h, whereas the excised tissue is rich in PGCs. We argue that the cells in the cluster are indeed primordial germ cells, at a stage significantly earlier than any reported previously. This would indicate that the PGC lineage in the mouse is set aside at least as early as 7 dpc, possibly as one of the first ‘mesodermal’ cell types to emerge, and that its differentiation, as expressed by ALP activity, is gradual.


Development ◽  
1968 ◽  
Vol 20 (3) ◽  
pp. 247-260
Author(s):  
Teresa Rogulska

Suggestive evidence for the extragonadal origin of germ cells in birds was first presented by Swift (1914), who described primordial germ cells in the chick embryo at as early a stage as the primitive streak. According to Swift, primordial germ cells are originally located extra-embryonically in the anterior part of the blastoderm and occupy a crescent-shaped region (‘germinal crescent’) on the boundary between area opaca and area pellucida. Swift also found that primordial germ cells later enter into the blood vessels, circulate together with the blood throughout the whole blastoderm and finally penetrate into the genital ridges, where they become definitive germ cells. Swift's views have been confirmed in numerous descriptive and experimental investigations. Among the latter, the publications of Willier (1937), Simon (1960) and Dubois (1964a, b, 1965a, b, 1966) merit special attention. Dubois finally proved that the genital ridges exert a strong chemotactic influence on the primordial germ cells.


Development ◽  
1954 ◽  
Vol 2 (4) ◽  
pp. 275-289
Author(s):  
Enrico Vannini ◽  
Armando Sabbadin

As long ago as 1941 and 1942 one of us (Vannini) found in a series of developmental stages of frog tadpoles that the somatic components of the medullary tissue of the gonad have their origin in the interrenal blastema, and not, as was then generally supposed, in the mesonephric blastema. In the earliest stages examined at that time the gonad rudiment had the structure of ‘paired genital ridges’, lying at each side of the dorsal mesentery, and were furnished with primordial germ-cells, but were still without medullary tissue. The interrenal blastema occupied a median site in the tadpole's body, ventral to the aorta and dorsal to the two subcardinal veins. The mesonephric blastemata appeared distinctly separate from the interrenal rudiment, because they were situated in a more lateral position, contiguous with the Wolffian ducts. In later stages the medullary tissue (‘medulla’) penetrated within the genital ridges.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 133-147
Author(s):  
P. P. L. Tam ◽  
M. H. L. Snow

Primitive-streak-stage mouse embryos were treated with Mitomycin C injected intraperitoneally into pregnant females at 6·75–7·0 days post coitum. The newborn mice developed poorly and mortality was high during the suckling period. Many weaned survivors showed impaired fertility and poor breeding performance. Histological examination revealed a paucity of germ cells in the adult gonads. The deficiency was mainly caused by a severe reduction of the primordial germ cell population in early embryonic life, which was not fully compensated for during the compensatory growth phase of the Mitomycin C-treated embryo. Also contributing to such impaired fertility were retarded migration of the primordial germ cells into the genital ridges, poor development of the foetal gonad and secondary loss of the germ cells during gametogenesis in males.


Development ◽  
1974 ◽  
Vol 31 (1) ◽  
pp. 75-87
Author(s):  
Piero P. Giorgi

Bufo bufo embryos were used at the tail-bud stage for the grafting of two different dorsal regions (cephalic and caudal tracts) into the ventral side of the embryo (cf. Fig. 1). Germ cell localization was studied at the beginning of larval life. The results seem to confirm the original finding of Gipouloux (1970) who suggested that in anurans germ cells migrate under the attraction of a substance produced by the dorsal mesodermal tissues. The attractive action of dorsal tissue was confined to the caudal region of the embryo. In operated specimens the migration of germ cells was drastically altered. The genital ridges of host embryos were almost sterile, while numerous germ cells appeared associated with caudal grafts. A considerably smaller number of germ cells was associated with cephalic grafts. About 80% of germ cells associated with caudal grafts were present at the same levels where a well-developed dorsal mesentery was also present. It is suggested that the formation of the dorsal mesentery plays a morphogenetic role in segregating primordial germ cells from other endodermal cells and contributes to their final localization in the genital ridges.


2010 ◽  
Vol 16 (9) ◽  
pp. 621-631 ◽  
Author(s):  
K. Mollgard ◽  
A. Jespersen ◽  
M. C. Lutterodt ◽  
C. Yding Andersen ◽  
P. E. Hoyer ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (2) ◽  
pp. 463-472 ◽  
Author(s):  
IN Rich

The identity of the cells giving rise to the hematopoietic system in the mouse embryo are unknown. The results presented here strongly suggest that hematopoietic cells are derived from a nonhematopoietic cell population that has been previously thought to give rise to the germ cells. These cells are called primordial germ cells (PGCs) and can be recognized as large cells showing blebbing and pseudopodial extrusions on their surface. They are alkaline phosphatase (AP) positive and possess a stage-specific embryonic antigen (SSEA-1) on their surface. They represent a small pool of cells in the extraembryonic mesoderm at the base of the allantois in late day-6 embryos. Primordial germ cells from 7.5- and 8.5-day visceral yolk sac and embryo proper form AP+ and SSEA-1+ colonies within 5 days when grown on an embryonic fibroblast feeder cell layer in the presence of leukemia inhibitory factor (LIF), stem cell factor (SCF), and interleukin-3 (IL-3). Individual colonies taken from day-5 cultures can be shown to differentiate into erythroid lineage cells in secondary methyl cellulose culture and produce secondary and tertiary PGCs in the presence of LIF, SCF, and IL-3. Cells taken from the region of the allantois and primitive streak can form colonies on hydrophilic Teflon (DuPont, Wilmington, DE) foils precoated with collagen and fibronectin. The cells from these colonies were then shown to form cobblestone areas on irradiated adult bone marrow stromal layers, indicating that the most primitive in vitro hematopoietic stem cell, the cobblestone-area forming cell (CAFC), was present. PGC colonies were grown in methyl cellulose in the presence of LIF, SCF, and IL-3 for 5 days, and the colonies were removed and passaged 3 times on pretreated extracellular matrix hydrophilic Teflon foils. After each passage, the cells were assayed for their differentiation capacity and PGC content. After the last passage, the number of CAFCs was also determined. It was found that, under these conditions, the PGC population expanded more than 400- fold and also contained CAFCs. It is postulated that the PGC represents a totipotent stem cell population capable of producing a variety of different cell types including cells of the hematopoietic system.


1997 ◽  
Vol 138 (2) ◽  
pp. 471-480 ◽  
Author(s):  
Martín I. García-Castro ◽  
Robert Anderson ◽  
Janet Heasman ◽  
Christopher Wylie

Cells are known to bind to individual extracellular matrix glycoproteins in a complex and poorly understood way. Overall strength of adhesion is thought to be mediated by a combinatorial mechanism, involving adhesion of a cell to a variety of binding sites on the target glycoproteins. During migration in embryos, cells must alter their overall adhesiveness to the substrate to allow locomotion. The mechanism by which this is accomplished is not well understood. During early development, the cells destined to form the gametes, the primordial germ cells (PGCs), migrate from the developing hind gut to the site where the gonad will form. We have used whole-mount immunocytochemistry to study the changing distribution of three extracellular matrix glycoproteins, collagen IV, fibronectin, and laminin, during PGC migration and correlated this with quantitative assays of adhesiveness of PGCs to each of these. We show that PGCs change their strength of adhesion to each glycoprotein differentially during these stages. Furthermore, we show that PGCs interact with a discrete tract of laminin at the end of migration. Closer analysis of the adhesion of PGCs to laminin revealed that PGCs adhere particularly strongly to the E3 domain of laminin, and blocking experiments in vitro suggest that they adhere to this domain using a cell surface proteoglycan.


Development ◽  
1961 ◽  
Vol 9 (4) ◽  
pp. 634-641
Author(s):  
A. W. Blackler ◽  
M. Fischberg

There have been many claims for the segregation of Anuran primordial germcells at an early embryonic stage. Most authors agree that these cells may be distinguished with ease in the most dorsal region of the larval endoderm and, somewhat later in development, at the base of the dorsal mesentery and in the undifferentiated gonad (see review by Johnston, 1951). Bounoure (1934) and Blackler (1958) claim to have traced the origin of the primordial germ-cells as early in development as the late blastula stage and to have recognized cell inclusions that become restricted to the germ line at all stages between the fertilized egg and the late blastula. As pointed out by Everett (1945), some workers in this field of embryological study have firmly denied the existence of primordial germ-cells, while others have been cautious of accepting the principle that these cells give rise to any of the definitive sex-cells (gametes).


Sign in / Sign up

Export Citation Format

Share Document