Caudalization of neural fate by tissue recombination and bFGF

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4349-4358 ◽  
Author(s):  
W.G. Cox ◽  
A. Hemmati-Brivanlou

In order to study anteroposterior neural patterning in Xenopus embryos, we have developed a novel assay using explants and tissue recombinants of early neural plate. We show, by using region-specific neural markers and lineage tracing, that posterior axial tissue induces midbrain and hindbrain fates from prospective forebrain. The growth factor bFGF mimics the effect of the posterior dorsal explant in that it (i) induces forebrain to express hindbrain markers, (ii) induces prospective hindbrain explants to make spinal cord, but not forebrain and midbrain, and (iii) induces posterior neural fate in ectodermal explants neuralized by the dominant negative activin receptor and follistatin without mesoderm induction. The competence of forebrain explants to respond to both posterior axial explants and bFGF is lost by neural groove stages. These findings demonstrate that posterior neural fate can be derived from anterior neural tissue, and identify a novel activity for the growth factor bFGF in neural patterning. Our observations suggest that full anteroposterior neural patterning may be achieved by caudalization of prospective anterior neural fate in the vertebrate embryo.

Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3627-3636 ◽  
Author(s):  
T.M. Lamb ◽  
R.M. Harland

Neural tissue in developing Xenopus embryos is induced by signals from the dorsal mesoderm. Induction of anterior neural tissue could be mediated by noggin, a secreted polypeptide found in dorsal mesoderm. We show that bFGF, a known mesoderm inducer of blastula staged ectoderm, induces neural tissue from gastrula stage ectoderm. The type of neural tissue induced by bFGF from stage 10.25 ectoderm is posterior, as marked by Hox B9 expression. When bFGF and noggin are combined on early gastrula stage ectoderm, a more complete neural pattern is generated and no mesodermal tissue is detected. Explants treated with noggin and bFGF elongate and display distinct anterior and posterior ends marked by otx2 and Hox B9 expression, respectively. Furthermore, treatment of early gastrula ectoderm with noggin and bFGF results in the induction of En-2, a marker of the midbrain-hindbrain junction and Krox 20, a marker of the third and fifth rhombomeres of the hindbrain. Neither of these genes is induced by noggin alone or bFGF alone at this stage, suggesting a synergy in anterior-posterior neural patterning. The response of later gastrula (stage 11–12) ectoderm to bFGF changes so that Krox 20 and En-2 are induced by bFGF alone, while induction of more posterior tissue marked by Hox B9 is eliminated. The dose of bFGF affects the amount of neural tissue induced, but has little effect on the anterior-posterior character, rather the age of the ectoderm treated is the determinant of the response. Thus, an FGF signal may account for posterior neural induction, and anterior-posterior neural patterning could be partly explained by the actions of noggin and FGF, together with the changing response of the ectoderm to these factors.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 373-379 ◽  
Author(s):  
B. Blumberg ◽  
J. Bolado ◽  
T.A. Moreno ◽  
C. Kintner ◽  
R.M. Evans ◽  
...  

The vertebrate central nervous system (CNS) is induced by signals emanating from the dorsal mesoderm, or organizer, that divert the ectoderm away from an epidermal and towards a neural fate. Additional signals from the organizer pattern the neural ectoderm along the anteroposterior axis. We devised highly specific methods utilizing constitutively active or dominant negative receptors to evaluate the role of retinoids in neural patterning. Microinjection of these reagents either augments or reduces retinoid signaling in specific regions of the embryo. We show that increased receptor activity suppresses anterior neural structures while dominant negative receptors lead to anterior enhancement. Similarly, microinjection of the dominant negative receptor leads to the loss of posterior marker genes. We demonstrate that retinoid receptors comprise a critical component in neural posteriorization and are required for proper neuronal differentiation. These results support a quantitative role for retinoid signaling in regionalization of the CNS.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4128-4137 ◽  
Author(s):  
Tara L. Huber ◽  
Yi Zhou ◽  
Paul E. Mead ◽  
Leonard I. Zon

Hematopoietic induction occurs on the ventral side ofXenopus gastrulae and is thought to be triggered by the growth factor bone morphogenetic protein 4 (BMP-4). To characterize this process, we developed a quantitative and sensitive assay for the induction of erythroid cells from totipotent ectoderm of the embryo. When high doses of BMP-4 were used in this explant assay, few erythroid cells were detected. In contrast, large numbers of differentiated erythroid cells were induced when ectoderm was treated with BMP-4 and the mesoderm inducers, activin, or fibroblast growth factor (FGF). Ectopic expression of GATA-1 also induced abundant erythroid cells in ectoderm treated with bFGF. This induction of erythroid cells by GATA-1 was blocked by coexpression with a dominant negative BMP-4 receptor, showing that GATA-1 requires the BMP signaling cascade to function. These results suggest that BMP-4 requires mesoderm induction to generate a program of gene expression, which regulates the specification of hematopoietic mesoderm by GATA factors.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2403-2414 ◽  
Author(s):  
C. LaBonne ◽  
M. Bronner-Fraser

We have investigated the molecular interactions underlying neural crest formation in Xenopus. Using chordin overexpression to antagonize endogenous BMP signaling in whole embryos and explants, we demonstrate that such inhibition alone is insufficient to account for neural crest induction in vivo. We find, however, that chordin-induced neural plate tissue can be induced to adopt neural crest fates by members of the FGF and Wnt families, growth factors that have previously been shown to posteriorize induced neural tissue. Overexpression of a dominant negative XWnt-8 inhibits the expression of neural crest markers, demonstrating the necessity for a Wnt signal during neural crest induction in vivo. The requirement for Wnt signaling during neural crest induction is shown to be direct, whereas FGF-mediated neural crest induction may be mediated by Wnt signals. Overexpression of the zinc finger transcription factor Slug, one of the earliest markers of neural crest formation, is insufficient for neural crest induction. Slug-expressing ectoderm will generate neural crest in the presence of Wnt or FGF-like signals, however, bypassing the need for BMP inhibition in this process. A two-step model for neural crest induction is proposed.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4128-4137 ◽  
Author(s):  
Tara L. Huber ◽  
Yi Zhou ◽  
Paul E. Mead ◽  
Leonard I. Zon

Abstract Hematopoietic induction occurs on the ventral side ofXenopus gastrulae and is thought to be triggered by the growth factor bone morphogenetic protein 4 (BMP-4). To characterize this process, we developed a quantitative and sensitive assay for the induction of erythroid cells from totipotent ectoderm of the embryo. When high doses of BMP-4 were used in this explant assay, few erythroid cells were detected. In contrast, large numbers of differentiated erythroid cells were induced when ectoderm was treated with BMP-4 and the mesoderm inducers, activin, or fibroblast growth factor (FGF). Ectopic expression of GATA-1 also induced abundant erythroid cells in ectoderm treated with bFGF. This induction of erythroid cells by GATA-1 was blocked by coexpression with a dominant negative BMP-4 receptor, showing that GATA-1 requires the BMP signaling cascade to function. These results suggest that BMP-4 requires mesoderm induction to generate a program of gene expression, which regulates the specification of hematopoietic mesoderm by GATA factors.


Author(s):  
Daniela Lötsch ◽  
Dominik Kirchhofer ◽  
Bernhard Englinger ◽  
Li Jiang ◽  
Konstantin Okonechnikov ◽  
...  

AbstractEpendymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


2006 ◽  
Vol 17 (11) ◽  
pp. 4846-4855 ◽  
Author(s):  
Susann Karlsson ◽  
Katarzyna Kowanetz ◽  
Åsa Sandin ◽  
Camilla Persson ◽  
Arne Östman ◽  
...  

We have previously shown that the T-cell protein tyrosine phosphatase (TC-PTP) dephosphorylates the platelet-derived growth factor (PDGF) β-receptor. Here, we show that the increased PDGF β-receptor phosphorylation in TC-PTP knockout (ko) mouse embryonic fibroblasts (MEFs) occurs primarily on the cell surface. The increased phosphorylation is accompanied by a TC-PTP–dependent, monensin-sensitive delay in clearance of cell surface PDGF β-receptors and delayed receptor degradation, suggesting PDGF β-receptor recycling. Recycled receptors could also be directly detected on the cell surface of TC-PTP ko MEFs. The effect of TC-PTP depletion was specific for the PDGF β-receptor, because PDGF α-receptor homodimers were cleared from the cell surface at the same rate in TC-PTP ko MEFs as in wild-type MEFs. Interestingly, PDGF αβ-receptor heterodimers were recycling. Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF β-receptors colocalized with Rab4a, a marker for rapid recycling. In accordance with this, transient expression of a dominant-negative Rab4a construct increased the rate of clearance of cell surface receptors on TC-PTP ko MEFs. Thus, loss of TC-PTP specifically redirects the PDGF β-receptor toward rapid recycling, which is the first evidence of differential trafficking of PDGF receptor family members.


Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 139-149 ◽  
Author(s):  
S.L. Ang ◽  
J. Rossant

We have developed germ layer explant culture assays to study the role of mesoderm in anterior-posterior (A-P) patterning of the mouse neural plate. Using isolated explants of ectodermal tissue alone, we have demonstrated that the expression of Engrailed-1 (En-1) and En-2 genes in ectoderm is independent of mesoderm by the mid- to late streak stage, at least 12 hours before their onset of expression in the neural tube in vivo at the early somite stage. In recombination explants, anterior mesendoderm from headfold stage embryos induces the expression of En-1 and En-2 in pre- to early streak ectoderm and in posterior ectoderm from headfold stage embryos. In contrast, posterior mesendoderm from embryos of the same stage does not induce En genes in pre- to early streak ectoderm but is able to induce expression of a general neural marker, neurofilament 160 × 10(3) M(r). These results provide the first direct evidence for a role of mesendoderm in induction and regionalization of neural tissue in mouse.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 285-302 ◽  
Author(s):  
J.M. Slack ◽  
D. Tannahill

Interest in the problem of anteroposterior specification has quickened because of our near understanding of the mechanism in Drosophila and because of the homology of Antennapedia-like homeobox gene expression patterns in Drosophila and vertebrates. But vertebrates differ from Drosophila because of morphogenetic movements and interactions between tissue layers, both intimately associated with anteroposterior specification. The purpose of this article is to review classical findings and to enquire how far these have been confirmed, refuted or extended by modern work. The “pre-molecular” work suggests that there are several steps to the process: (i) Formation of anteroposterior pattern in mesoderm during gastrulation with posterior dominance. (ii) Regional specific induction of ectoderm to form neural plate. (iii) Reciprocal interactions from neural plate to mesoderm. (iv) Interactions within neural plate with posterior dominance. Unfortunately, almost all the observable markers are in the CNS rather than in the mesoderm where the initial specification is thought to occur. This has meant that the specification of the mesoderm has been assayed indirectly by transplantation methods such as the Einsteckung. New molecular markers now supplement morphological ones but they are still mainly in the CNS and not the mesoderm. A particular interest attaches to the genes of the Antp-like HOX clusters since these may not only be markers but actual coding factors for anteroposterior levels. We have a new understanding of mesoderm induction based on the discovery of activins and fibroblast growth factors (FGFs) as candidate inducing factors. These factors have later consequences for anteroposterior pattern with activin tending to induce anterior, and FGF posterior structures. Recent work on neural induction has implicated cAMP and protein kinase C (PKC) as elements of the signal transduction pathway and has provided new evidence for the importance of tangential neural induction. The regional specificity of neural induction has been reinvestigated using molecular markers and provides conclusions rather similar to the classical work. Defects in the axial pattern may be produced by retinoic acid but it remains unclear whether its effects are truly coordinate ones or are concentrated in certain regions of high sensitivity. In general the molecular studies have supported and reinforced the “pre-molecular ones”. Important questions still remain: (i) How much pattern is there in the mesoderm (how many states?) (ii) How is this pattern generated by the invaginating organizer? (iii) Is there one-to-one transmission of codings to the neural plate? (iv) What is the nature of the interactions within the neural plate? (v) Are the HOX cluster genes really the anteroposterior codings?


Sign in / Sign up

Export Citation Format

Share Document