Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle

Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 993-1004 ◽  
Author(s):  
I.L. Blitz ◽  
K.W. Cho

In order to study the regional specification of neural tissue we isolated Xotx2, a Xenopus homolog of the Drosophila orthodenticle gene. Xotx2 is initially expressed in Spemann's organizer and its expression is absent in the ectoderm of early gastrulae. As gastrulation proceeds, Xotx2 expression is induced in the overlying ectoderm and this domain of expression moves anteriorly in register with underlying anterior mesoderm throughout the remainder of gastrulation. The expression pattern of Xotx2 suggests that a wave of Xotx2 expression (marking anterior neurectoderm) travels through the ectoderm of the gastrula with the movement of underlying anterior (prechordal plate) mesoderm. This expression of Xotx2 is reminiscent of the Eyal-Giladi model for neural induction. According to this model, anterior neural-inducing signals emanating from underlying anterior mesoderm transiently induce anterior neural tissues after vertical contact with the overlying ectoderm. Further patterning is achieved when the ectoderm receives caudalizing signals as it comes in contact with more posterior mesoderm during subsequent gastrulation movements. Functional characterization of the Xotx2 protein has revealed its involvement in differentiation of the anterior-most tissue, the cement gland. Ectopic expression of Xotx2 in embryos induces extra cement glands in the skin as well as inducing a cement gland marker (XAG1) in isolated animal cap ectoderm. Microinjection of RNA encoding the organizer-specific homeo-domain protein goosecoid into the ventral marginal zone results in induction of the Xotx2 gene. This result, taken in combination with the indistinguishable expression patterns of Xotx2 and goosecoid in the anterior mesoderm suggests that Xotx2 is a target of goosecoid regulation.

2017 ◽  
Author(s):  
Tyson C. C. Kerr ◽  
Haggag Abdel-Mageed ◽  
MiYoung Kang ◽  
Dakota Cryer ◽  
Randy D. Allen

AbstractThe AREB/ABF bZIP transcription factors play a pivotal role in abscisic acid-dependent abiotic stress-responsive gene expression. Despite the perennial damage and reduced productivity that result from water-deficit and unpredictable early season temperature fluctuations, these critical genes have not been previously examined in upland cotton (Gossypium hirsutum). Here, we report the isolation of the G. hirsutum ABF homologs, characterization of their expression patterns in response to abiotic stress treatments, and examination of their functions through heterologous ectopic expression in Arabidopsis. As expected for an allotetraploid, G. hirsutum ABF homologs are present in the genome as homeologous pairs. These genes are differentially expressed, both among the homologs and within the homeologous pairs, in response to exogenous abscisic acid (ABA) application, dehydration, and chilling temperatures. Furthermore, heterologous ectopic expression of many of the G. hirsutum ABF genes in Arabidopsis conferred increased tolerance to water deficit and osmotic stress, as well as cold tolerance, in a gene specific manner. These results indicate the G. hirsutum ABF homologs are functional in Arabidopsis and, as in other species, are likely to play an essential role in the abiotic stress response.HighlightThe Gossypium hirsutum ABF homeologs are differentially expressed in response to abiotic stress, and their ectopic expression in Arabidopsis can confer increased water deficit tolerance.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 131-142
Author(s):  
Laura A Johnston ◽  
Bruce D Ostrow ◽  
Christine Jasoni ◽  
Karen Blochlinger

Abstract The cut locus (ct) codes for a homeodomain protein (Cut) and controls the identity of a subset of cells in the peripheral nervous system in Drosophila. During a screen to identify ct-interacting genes, we observed that flies containing a hypomorphic ct mutation and a heterozygous deletion of the Antennapedia complex exhibit a transformation of mouthparts into leg and antennal structures similar to that seen in homozygous proboscipedia (pb) mutants. The same phenotype is produced with all heterozygous pb alleles tested and is fully penetrant in two different ct mutant backgrounds. We show that this phenotype is accompanied by pronounced changes in the expression patterns of both ct and pb in labial discs. Furthermore, a significant proportion of ct mutant flies that are heterozygous for certain Antennapedia (Antp) alleles have thoracic defects that mimic loss-of-function Antp phenotypes, and ectopic expression of Cut in antennal discs results in ectopic Antp expression and a dominant Antp-like phenotype. Our results implicate ct in the regulation of expression and/or function of two homeotic genes and document a new role of ct in the control of segmental identity.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2153
Author(s):  
Jinxian Liu ◽  
Chang Zhang ◽  
Weihua Su ◽  
Guangheng Wu ◽  
Xianyu Fu ◽  
...  

Calmodulin (CaM), as an important factor in the calcium signaling pathway, is widely involved in plant growth and development regulation and responses to external stimuli. In this study, the full-length sequence of the ScCaM gene (GenBank: GQ246454) was isolated from the leaves of a Saccharum spp. hybrid. Prokaryotic expression showed that ScCaM could be solubly expressed and purified in Escherichia coli BL21. Subcellular localization confirmed that ScCaM was localized in the plasma membrane and nucleus of cells. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that ScCaM can be induced by various stresses, including sodium chloride (NaCl), chromium trichloride (CrCl3), salicylic acid (SA), and methyl jasmonate (MeJA). Ectopic expression in Arabidopsis thaliana demonstrated that ScCaM can affect the growth and development of transgenic plants. Moreover, the qRT-PCR analysis indicated that the overexpression of the allogenic ScCaM gene inhibits the expression of AtSTM, leading to the phenomenon of multiple-tillering in transgenic A. thaliana. Furthermore, the expression patterns of ScCaM under abiotic stress and phytohormone stimulation in transgenic A. thaliana confirmed that ScCaM was involved in the responses to phytohormone, high salt, and heavy metal stresses. The present study provided valuable information and facilitates further investigation into the function of ScCaM in the future.


2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.


2007 ◽  
Vol 6 (6) ◽  
pp. 940-948 ◽  
Author(s):  
Carrie A. Davis ◽  
Michael P. S. Brown ◽  
Upinder Singh

ABSTRACT Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5′ splice site and a UAG 3′ splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 285-302 ◽  
Author(s):  
J.M. Slack ◽  
D. Tannahill

Interest in the problem of anteroposterior specification has quickened because of our near understanding of the mechanism in Drosophila and because of the homology of Antennapedia-like homeobox gene expression patterns in Drosophila and vertebrates. But vertebrates differ from Drosophila because of morphogenetic movements and interactions between tissue layers, both intimately associated with anteroposterior specification. The purpose of this article is to review classical findings and to enquire how far these have been confirmed, refuted or extended by modern work. The “pre-molecular” work suggests that there are several steps to the process: (i) Formation of anteroposterior pattern in mesoderm during gastrulation with posterior dominance. (ii) Regional specific induction of ectoderm to form neural plate. (iii) Reciprocal interactions from neural plate to mesoderm. (iv) Interactions within neural plate with posterior dominance. Unfortunately, almost all the observable markers are in the CNS rather than in the mesoderm where the initial specification is thought to occur. This has meant that the specification of the mesoderm has been assayed indirectly by transplantation methods such as the Einsteckung. New molecular markers now supplement morphological ones but they are still mainly in the CNS and not the mesoderm. A particular interest attaches to the genes of the Antp-like HOX clusters since these may not only be markers but actual coding factors for anteroposterior levels. We have a new understanding of mesoderm induction based on the discovery of activins and fibroblast growth factors (FGFs) as candidate inducing factors. These factors have later consequences for anteroposterior pattern with activin tending to induce anterior, and FGF posterior structures. Recent work on neural induction has implicated cAMP and protein kinase C (PKC) as elements of the signal transduction pathway and has provided new evidence for the importance of tangential neural induction. The regional specificity of neural induction has been reinvestigated using molecular markers and provides conclusions rather similar to the classical work. Defects in the axial pattern may be produced by retinoic acid but it remains unclear whether its effects are truly coordinate ones or are concentrated in certain regions of high sensitivity. In general the molecular studies have supported and reinforced the “pre-molecular ones”. Important questions still remain: (i) How much pattern is there in the mesoderm (how many states?) (ii) How is this pattern generated by the invaginating organizer? (iii) Is there one-to-one transmission of codings to the neural plate? (iv) What is the nature of the interactions within the neural plate? (v) Are the HOX cluster genes really the anteroposterior codings?


2021 ◽  
Author(s):  
Wanda Biala-Leonhard ◽  
Laura Zanin ◽  
Stefano Gottardi ◽  
Rita de Brito Francisco ◽  
Silvia Venuti ◽  
...  

Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by e.g., forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids, that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.


Sign in / Sign up

Export Citation Format

Share Document