Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3519-3529 ◽  
Author(s):  
L.A. Johnston ◽  
G. Schubiger

We have expressed the segment polarity gene wingless (wg) ectopically in imaginal discs to examine its regulation of both ventral patterning and transdetermination. By experimentally manipulating the amount of Wg protein, we show that different thresholds of Wg activity elicit different outcomes, which are mediated by regulation of decapentaplegic (dpp) expression and result in alterations in the expression of homeotic genes. A high level of Wg activity leads to loss of all dorsal pattern elements and the formation of a complete complement of ventral pattern elements on the dorsal side of legs, and is correlated with repression of dpp expression. wg expression in dorsal cells of each disc also leads to dose-dependent transdetermination in those cells in homologous discs such as the labial, antennal and leg, but not in cells of dorsally located discs. When dpp expression is repressed by high levels of Wg, transdetermination does not occur, confirming that dpp participates with wg to induce transdetermination. These and other experiments suggest that dorsal expression of wg alters disc patterning and disc cell determination by modulating the expression of dpp. The dose-dependent effects of wg on dpp expression, ventralization of dorsal cells and transdetermination support a model in which wg functions as a morphogen in imaginal discs.

Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1263-1272 ◽  
Author(s):  
L. Maves ◽  
G. Schubiger

Drosophila imaginal discs, the precursors of the adult fly appendages, have been the subject of intensive developmental studies, particularly on cell determination. Cultured disc fragments are recognized not only for the ability to maintain their determined state through extra cell divisions but also for the ability to transdetermine, or switch to the determined state of a different disc. An understanding of transdetermination at a molecular level will provide further insight into the requirements for maintaining cell determination. We find that ectopic expression of the Drosophila gene wingless induces transdetermination of foreleg imaginal disc cells to wing cells. This transdetermination occurs in foreleg discs of developing larvae without disc fragmentation. The in situ-transdetermining cells localize to the dorsal region of the foreleg disc. This wingless-induced transdetermination event is remarkably similar to the leg-to-wing switch that occurs after leg disc culture. Thus we have identified a new approach to a molecular dissection of transdetermination.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3283-3294 ◽  
Author(s):  
A.J. Forbes ◽  
A.C. Spradling ◽  
P.W. Ingham ◽  
H. Lin

In the Drosophila ovary, hedgehog (hh) signaling from cells near the apical tip of the germarium stimulates the proliferation and specification of somatic cells in region 2 of the germarium, 2–5 cells away from the hh-expressing cells (A. J. Forbes, H. Lin, P. Ingham and A. Spradling (1996) Development 122, 1125–1135). This report examines the role during early oogenesis of several genes that are known to function in hh-mediated signaling during embryonic and larval development (P. Ingham (1995) Current Opin. Genetics Dev. 5, 528–534). As in imaginal discs, engrailed (en) is co-expressed with hh in the germarium, while patched (ptc) and cubitus interruptus (ci) are expressed in somatic cells throughout the germarium and in developing egg chambers, with ptc expression being elevated within 10 cell diameters of the source of the hh signal. Moreover, the somatic cell overproliferation caused by ectopic hh expression is accompanied by elevated levels of ptc and is phenocopied in ptc- somatic clones. These analyses suggest that ptc and ci are components of the hh signaling pathway in the germarium. However, unlike embryos and imaginal discs, neither wingless (wg) nor decapentaplegic (dpp) appear to mediate the ovarian hh signal. wg is expressed in ‘cap cells,’ a subset of hh-expressing cells located adjacent to germ-line stem cells, but is unaffected by ectopic hh expression. Nor does the ectopic expression of wg or dpp mimic the effect of ectopic hh expression. We propose that Hh diffuses from apical cells, including cap cells, and regulates the proliferation of nearby ovarian somatic cells by antagonizing the negative effects of ptc on ci activity in these cells, thereby allowing the transcription of ci-dependent genes, including ptc itself.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 841-854 ◽  
Author(s):  
M.L. Lamka ◽  
A.M. Boulet ◽  
S. Sakonju

The Abdominal-B (Abd-B) gene, a member of the bithorax complex (BX-C), specifies the identities of parasegments (PS) 10–14 in Drosophila. Abd-B codes for two structurally related homeodomain proteins, ABD-B m and ABD-B r, that are expressed in PS10-13 and PS14-15, respectively. Although ABD-B m and r proteins have distinct developmental functions, ectopic expression of either protein during embryogenesis induces the development of filzkorper and associated spiracular hairs, structures normally located in PS13, at ectopic sites in the larval thorax and abdomen. These results suggest that other parasegmental differences contribute to the phenotype specified by ABD-B r activity in PS14. Both ABD-B m and r repress the expression of other homeotic genes, such as Ubx and abd-A, in PS10-14. However, the importance of these and other cross-regulatory interactions among homeotic genes has been questioned. Since ectopic UBX protein apparently failed to transform abdominal segments, Gonzalez-Reyes et al. (Gonzalez-Reyes, A., Urquia, N., Gehring, W.J., Struhl, G. and Morata, G. (1990). Nature 344, 78–80) proposed a functional hierarchy in which ABD-A and ABD-B activities override UBX activity. We tested this model by expressing UBX and ABD-B m proteins ectopically in wild-type and BX-C-deficient embryos. Ectopic ABD-B m does not prevent transformations induced by ectopic UBX. Instead, ectopic UBX and ABD-B m proteins compete for the specification of segmental identities in a dose-dependent fashion. Our results support a quantitative competition among the homeotic proteins rather than the existence of a strict functional hierarchy. Therefore, we suggest that cross-regulatory interactions are not irrelevant but are important for repressing the expression of competing homeotic proteins. To explain the apparent failure of ectopic UBX to transform the abdominal segments, we expressed UBX at different times during embryonic development. Our results show that ectopic UBX affects abdominal cuticular identities if expressed during early stages of embryogenesis. In later embryonic stages, abdominal segments become resistant to transformation by ectopic UBX while thoracic segments remain susceptible. Head segments also show a similar stage-dependent susceptibility to transformation by ectopic UBX in early embryogenesis but become resistant in later stages. These results suggest that abdominal and head identities are determined earlier than are thoracic identities.


Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 805-810 ◽  
Author(s):  
D. Moazed ◽  
P.H. O'Farrell

The stable maintenance of expression patterns of homeotic genes depends on the function of a number of negative trans-regulators, termed the Polycomb (Pc) group of genes. We have examined the pattern of expression of the Drosophila segment polarity gene, engrailed (en), in embryos mutant for several different members of the Pc group. Here we report that embryos mutant for two or more Pc group genes show strong ectopic en expression, while only weak derepression of en occurs in embryos mutant for a single Pc group gene. This derepression is independent of two known activators of en expression: en itself and wingless. Additionally, in contrast to the strong ectopic expression of homeotic genes observed in extra sex combs- (esc-) mutant embryos, the en expression pattern is nearly normal in esc- embryos. This suggests that the esc gene product functions in a pathway independent of the other genes in the group. The data indicate that the same group of genes is required for stable restriction of en expression to a striped pattern and for the restriction of expression of homeotic genes along the anterior-posterior axis, and support a global role for the Pc group genes in stable repression of activity of developmental selector genes.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1159-1168 ◽  
Author(s):  
R. Vogels ◽  
W. de Graaff ◽  
J. Deschamps

This study reports the expression pattern of the murine homeobox-containing gene Hox-2.3 during development. Using in situ hybridization, we first detect Hox-2.3 transcripts in the allantois primordium at 7.5 days post coitum (p.c.). One day later transcripts are found in embryonic ectoderm and mesoderm. In 9.5- and 10.5- day embryos Hox-2.3 expression is observed in the central nervous system (CNS) from a rostral boundary in the upper spinal cord to the caudal end. Within this anteroposterior domain, Hox-2.3 expression is also found in the peripheral nervous system, in the mesoderm and in the hindgut epithelium. The rostral boundary in the mesoderm is located at the level of the 11th somite and thus shifted posteriorwards compared to the rostral boundary in the neural tube. During subsequent development, the initially broad expression pattern in the somitic, lateral plate and intermediate mesoderm becomes restricted to structures in the urogenital system. In adults, the spinal cord and the derivatives of the Wolffian and Mullerian ducts continue to express the gene at a high level. The described temporal and tissue-specific changes in expression of Hox-2.3 are suggestive of several levels of regulation as reported for Drosophila homeotic genes and argue for more than one role of the gene during development and in adults.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Development ◽  
1988 ◽  
Vol 104 (4) ◽  
pp. 713-720 ◽  
Author(s):  
A. Busturia ◽  
G. Morata

The morphological patterns in the adult cuticle of Drosophila are determined principally by the homeotic genes of the bithorax and Antennapedia complexes. We find that many of these genes become indiscriminately active in the adult epidermis when the Pc gene is eliminated. By using the Pc3 mutation and various BX-C mutant combinations, we have generated clones of imaginal cells possessing different combinations of active homeotic genes. We find that, in the absence of BX-C genes, Pc- clones develop prothoracic patterns; this is probably due to the activity of Sex combs reduced which overrules Antennapedia. Adding contributions of Ultrabithorax, abdominal-A and Abdominal-B results in thoracic or abdominal patterns. We have established a hierarchical order among these genes: Antp less than Scr less than Ubx less than abd-A less than Abd-B. In addition, we show that the engrailed gene is ectopically active in Pc- imaginal cells.


2019 ◽  
Author(s):  
Mohsen Ghasemi ◽  
Jayant Maini ◽  
Shruti Jain ◽  
Vasanthi Dasari ◽  
Rakesh Mishra ◽  
...  

AbstractThe chromatin remodeling protein, dIno80 (Drosophila Ino80) regulates homeotic genes. We show that Ino80, along with Trx and ETP (Enhancer of Trithorax and Polycomb) proteins, interacts with two Polycomb/Trithorax Responsive Elements (PRE/TRE), iab-7 and bxd PRE in flies and the larval imaginal discs. In S2 cells, dIno80 localizes to the endogenous iab-7 and bxd-PREs. The localization of Ino80 and Pleiohomeotic (Pho) at the PRE is sensitive to the cellular abundance of each other; when levels of Ino80 are limiting, there is increased Pho enrichment, and Pho knock-down leads to increased enrichment of Ino80. We demonstrate that over-expression of dIno80 rescues the pupal lethality in pleiohomeotic (pho) deficient flies, which suggests that dIno80 has a role in cellular memory. The apparent competition between Pho and Ino80 for binding at the PRE indicates that Ino80 may act as a potential recruiter of the regulatory complex in addition to being a chromatin remodeler.Author SummaryThe null mutants of Pho and dIno80 show lethality at different stages of development in the fly, implying that they may function independent of each other. The observation that Pho-lethality can be rescued by overexpression of dIno80 with significant penetrance and that Ino80 has its own DNA binding domain, led us to predict that Ino80 may have Pho-independent functions, perhaps through non-canonical complexes. In the current study, we show that dIno80 interacts with bxd and iab-7 PRE in cooperation with Polycomb and Trithorax proteins and regulate the homeotic genes. The effect of knock-down or mutation of dIno80 results in altered phenotype in adult flies and rescue of Lac-Z expression in imaginal discs, in parallel with similar effect of Pho mutation or knock-down. We provide evidence of direct interaction of dIno80 with iab7- and bxd-PRE using chromatin immunoprecipitation. The dIno80 localization in and around the PRE sequence was enhanced in the absence of Pho, indicating competition between Pho and dIno80 for binding at the PRE.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1823-1838 ◽  
Author(s):  
Olivier Saget ◽  
Françoise Forquignon ◽  
Pedro Santamaria ◽  
Neel B Randsholt

Abstract We have analyzed the requirements for the multi sex combs (mxc) gene during development to gain further insight into the mechanisms and developmental processes that depend on the important trans-regulators forming the Polycomb group (PcG) in Drosophila melanogaster. mxc is allelic with the tumor suppressor locus lethal (1) malignant blood neoplasm (l(1)mbn). We show that the mxc product is dramatically needed in most tissues because its loss leads to cell death after a few divisions. mxc has also a strong maternal effect. We find that hypomorphic mxc mutations enhance other PcG gene mutant phenotypes and cause ectopic expression of homeotic genes, confirming that PcG products are cooperatively involved in repression of selector genes outside their normal expression domains. We also demonstrate that the mxc product is needed for imaginal head specification, through regulation of the ANT-C gene Deformed. Our analysis reveals that mxc is involved in the maternal control of early zygotic gap gene expression previously reported for some PcG genes and suggests that the mechanism of this early PcG function could be different from the PcG-mediated regulation of homeotic selector genes later in development. We discuss these data in view of the numerous functions of PcG genes during development.


Sign in / Sign up

Export Citation Format

Share Document