scholarly journals Mutations affecting development of the zebrafish ear

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 275-283 ◽  
Author(s):  
J. Malicki ◽  
A.F. Schier ◽  
L. Solnica-Krezel ◽  
D.L. Stemple ◽  
S.C. Neuhauss ◽  
...  

In a large scale screen for genetic defects in zebrafish embryogenesis we identified mutations affecting several aspects of ear development, including: specification of the otic placode, growth of the otic vesicle (otocyst), otolith formation, morphogenesis of the semicircular canals and differentiation of the otic capsule. Here we report initial phenotypic and genetic characterization of 20 of these mutations defining 13 independent loci. Embryos mutant at the quadro locus display abnormal specification of the otic placode. As revealed by dlx-3 expression, the otic field in the mutant embryos is smaller or split into two fields. At later stages of development the ear of quadro mutants is frequently divided into two smaller, incomplete units. Four loci affect ear shape shortly after formation of the otic vesicle. All of them also display abnormal brain morphology. Mutations in five loci result in the absence of otolith formation; two of these also produce changes of ear morphology. Two loci, little richard and golas, affect morphology of the otic vesicle shortly before formation of the semicircular canals. In both cases the morphogenesis of the semicircular canals is disrupted. Finally, the antytalent locus is involved in late expansion of the ear structure. Analysis of mutations presented here will strengthen our understanding of vertebrate ear morphogenesis and provide novel entry points to its genetic analysis.

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 241-254 ◽  
Author(s):  
T.T. Whitfield ◽  
M. Granato ◽  
F.J. van Eeden ◽  
U. Schach ◽  
M. Brand ◽  
...  

Mutations giving rise to anatomical defects in the inner ear have been isolated in a large scale screen for mutations causing visible abnormalities in the zebrafish embryo (Haffter, P., Granato, M., Brand, M. et al. (1996) Development 123, 1–36). 58 mutants have been classified as having a primary ear phenotype; these fall into several phenotypic classes, affecting presence or size of the otoliths, size and shape of the otic vesicle and formation of the semicircular canals, and define at least 20 complementation groups. Mutations in seven genes cause loss of one or both otoliths, but do not appear to affect development of other structures within the ear. Mutations in seven genes affect morphology and patterning of the inner ear epithelium, including formation of the semicircular canals and, in some, development of sensory patches (maculae and cristae). Within this class, dog-eared mutants show abnormal development of semicircular canals and lack cristae within the ear, while in van gogh, semicircular canals fail to form altogether, resulting in a tiny otic vesicle containing a single sensory patch. Both these mutants show defects in the expression of homeobox genes within the otic vesicle. In a further class of mutants, ear size is affected while patterning appears to be relatively normal; mutations in three genes cause expansion of the otic vesicle, while in little ears and microtic, the ear is abnormally small, but still contains all five sensory patches, as in the wild type. Many of the ear and otolith mutants show an expected behavioural phenotype: embryos fail to balance correctly, and may swim on their sides, upside down, or in circles. Several mutants with similar balance defects have also been isolated that have no obvious structural ear defect, but that may include mutants with vestibular dysfunction of the inner ear (Granato, M., van Eeden, F. J. M., Schach, U. et al. (1996) Development, 123, 399–413,). Mutations in 19 genes causing primary defects in other structures also show an ear defect. In particular, ear phenotypes are often found in conjunction with defects of neural crest derivatives (pigment cells and/or cartilaginous elements of the jaw). At least one mutant, dog-eared, shows defects in both the ear and another placodally derived sensory system, the lateral line, while hypersensitive mutants have additional trunk lateral line organs.


Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3831-3846 ◽  
Author(s):  
M.J. Depew ◽  
J.K. Liu ◽  
J.E. Long ◽  
R. Presley ◽  
J.J. Meneses ◽  
...  

We report the generation and analysis of mice homozygous for a targeted deletion of the Dlx5 homeobox gene. Dlx5 mutant mice have multiple defects in craniofacial structures, including their ears, noses, mandibles and calvaria, and die shortly after birth. A subset (28%) exhibit exencephaly. Ectodermal expression of Dlx5 is required for the development of olfactory and otic placode-derived epithelia and surrounding capsules. The nasal capsules are hypoplastic (e.g. lacking turbinates) and, in most cases, the right side is more severely affected than the left. Dorsal otic vesicle derivatives (e. g. semicircular canals and endolymphatic duct) and the surrounding capsule, are more severely affected than ventral (cochlear) structures. Dlx5 is also required in mandibular arch ectomesenchyme, as the proximal mandibular arch skeleton is dysmorphic. Dlx5 may control craniofacial development in part through the regulation of the goosecoid homeobox gene. goosecoid expression is greatly reduced in Dlx5 mutants, and both goosecoid and Dlx5 mutants share a number of similar craniofacial malformations. Dlx5 may perform a general role in skeletal differentiation, as exemplified by hypomineralization within the calvaria. The distinct focal defects within the branchial arches of the Dlx1, Dlx2 and Dlx5 mutants, along with the nested expression of their RNAs, support a model in which these genes have both redundant and unique functions in the regulation of regional patterning of the craniofacial ectomesenchyme.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Author(s):  
H.W. Ho ◽  
J.C.H. Phang ◽  
A. Altes ◽  
L.J. Balk

Abstract In this paper, scanning thermal conductivity microscopy is used to characterize interconnect defects due to electromigration. Similar features are observed both in the temperature and thermal conductivity micrographs. The key advantage of the thermal conductivity mode is that specimen bias is not required. This is an important advantage for the characterization of defects in large scale integrated circuits. The thermal conductivity micrographs of extrusion, exposed and subsurface voids are presented and compared with the corresponding topography and temperature micrographs.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jerod L. Ptacin ◽  
Carolina E. Caffaro ◽  
Lina Ma ◽  
Kristine M. San Jose Gall ◽  
Hans R. Aerni ◽  
...  

AbstractThe implementation of applied engineering principles to create synthetic biological systems promises to revolutionize medicine, but application of fundamentally redesigned organisms has thus far not impacted practical drug development. Here we utilize an engineered microbial organism with a six-letter semi-synthetic DNA code to generate a library of site-specific, click chemistry compatible amino acid substitutions in the human cytokine IL-2. Targeted covalent modification of IL-2 variants with PEG polymers and screening identifies compounds with distinct IL-2 receptor specificities and improved pharmacological properties. One variant, termed THOR-707, selectively engages the IL-2 receptor beta/gamma complex without engagement of the IL-2 receptor alpha. In mice, administration of THOR-707 results in large-scale activation and amplification of CD8+ T cells and NK cells, without Treg expansion characteristic of IL-2. In syngeneic B16-F10 tumor-bearing mice, THOR-707 enhances drug accumulation in the tumor tissue, stimulates tumor-infiltrating CD8+ T and NK cells, and leads to a dose-dependent reduction of tumor growth. These results support further characterization of the immune modulatory, anti-tumor properties of THOR-707 and represent a fundamental advance in the application of synthetic biology to medicine, leveraging engineered semi-synthetic organisms as cellular factories to facilitate discovery and production of differentiated classes of chemically modified biologics.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


Sign in / Sign up

Export Citation Format

Share Document