Mutations affecting development of the zebrafish inner ear and lateral line

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 241-254 ◽  
Author(s):  
T.T. Whitfield ◽  
M. Granato ◽  
F.J. van Eeden ◽  
U. Schach ◽  
M. Brand ◽  
...  

Mutations giving rise to anatomical defects in the inner ear have been isolated in a large scale screen for mutations causing visible abnormalities in the zebrafish embryo (Haffter, P., Granato, M., Brand, M. et al. (1996) Development 123, 1–36). 58 mutants have been classified as having a primary ear phenotype; these fall into several phenotypic classes, affecting presence or size of the otoliths, size and shape of the otic vesicle and formation of the semicircular canals, and define at least 20 complementation groups. Mutations in seven genes cause loss of one or both otoliths, but do not appear to affect development of other structures within the ear. Mutations in seven genes affect morphology and patterning of the inner ear epithelium, including formation of the semicircular canals and, in some, development of sensory patches (maculae and cristae). Within this class, dog-eared mutants show abnormal development of semicircular canals and lack cristae within the ear, while in van gogh, semicircular canals fail to form altogether, resulting in a tiny otic vesicle containing a single sensory patch. Both these mutants show defects in the expression of homeobox genes within the otic vesicle. In a further class of mutants, ear size is affected while patterning appears to be relatively normal; mutations in three genes cause expansion of the otic vesicle, while in little ears and microtic, the ear is abnormally small, but still contains all five sensory patches, as in the wild type. Many of the ear and otolith mutants show an expected behavioural phenotype: embryos fail to balance correctly, and may swim on their sides, upside down, or in circles. Several mutants with similar balance defects have also been isolated that have no obvious structural ear defect, but that may include mutants with vestibular dysfunction of the inner ear (Granato, M., van Eeden, F. J. M., Schach, U. et al. (1996) Development, 123, 399–413,). Mutations in 19 genes causing primary defects in other structures also show an ear defect. In particular, ear phenotypes are often found in conjunction with defects of neural crest derivatives (pigment cells and/or cartilaginous elements of the jaw). At least one mutant, dog-eared, shows defects in both the ear and another placodally derived sensory system, the lateral line, while hypersensitive mutants have additional trunk lateral line organs.

Development ◽  
1998 ◽  
Vol 125 (1) ◽  
pp. 33-39 ◽  
Author(s):  
T. Hadrys ◽  
T. Braun ◽  
S. Rinkwitz-Brandt ◽  
H.H. Arnold ◽  
E. Bober

The inner ear develops from the otic vesicle, a one-cell-thick epithelium, which eventually transforms into highly complex structures including the sensory organs for balance (vestibulum) and hearing (cochlea). Several mouse inner ear mutations with hearing and balance defects have been described but for most the underlying genes have not been identified, for example, the genes controlling the development of the vestibular organs. Here, we report the inactivation of the homeobox gene, Nkx5-1, by homologous recombination in mice. This gene is expressed in vestibular structures throughout inner ear development. Mice carrying the Nkx5-1 null mutation exhibit behavioural abnormalities that resemble the typical hyperactivity and circling movements of the shaker/waltzer type mutants. The balance defect correlates with severe malformations of the vestibular organ in Nkx5-1(−/−) mutants, which fail to develop the semicircular canals. Nkx5-1 is the first ear-specific molecule identified to play a crucial role in the formation of the mammalian vestibular system.


Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 275-283 ◽  
Author(s):  
J. Malicki ◽  
A.F. Schier ◽  
L. Solnica-Krezel ◽  
D.L. Stemple ◽  
S.C. Neuhauss ◽  
...  

In a large scale screen for genetic defects in zebrafish embryogenesis we identified mutations affecting several aspects of ear development, including: specification of the otic placode, growth of the otic vesicle (otocyst), otolith formation, morphogenesis of the semicircular canals and differentiation of the otic capsule. Here we report initial phenotypic and genetic characterization of 20 of these mutations defining 13 independent loci. Embryos mutant at the quadro locus display abnormal specification of the otic placode. As revealed by dlx-3 expression, the otic field in the mutant embryos is smaller or split into two fields. At later stages of development the ear of quadro mutants is frequently divided into two smaller, incomplete units. Four loci affect ear shape shortly after formation of the otic vesicle. All of them also display abnormal brain morphology. Mutations in five loci result in the absence of otolith formation; two of these also produce changes of ear morphology. Two loci, little richard and golas, affect morphology of the otic vesicle shortly before formation of the semicircular canals. In both cases the morphogenesis of the semicircular canals is disrupted. Finally, the antytalent locus is involved in late expansion of the ear structure. Analysis of mutations presented here will strengthen our understanding of vertebrate ear morphogenesis and provide novel entry points to its genetic analysis.


Author(s):  
Jing He ◽  
Zhiwei Zheng ◽  
Xianyang Luo ◽  
Yongjun Hong ◽  
Wenling Su ◽  
...  

Histone demethylase PHF8 is crucial for multiple developmental processes, and hence, the awareness of its function in developing auditory organs needs to be increased. Using in situ hybridization (ISH) labeling, the mRNA expression of PHF8 in the zebrafish lateral line system and otic vesicle was monitored. The knockdown of PHF8 by morpholino significantly disrupted the development of the posterior lateral line system, which impacted cell migration and decreased the number of lateral line neuromasts. The knockdown of PHF8 also resulted in severe malformation of the semicircular canal and otoliths in terms of size, quantity, and position during the inner ear development. The loss of function of PHF8 also induced a defective differentiation in sensory hair cells in both lateral line neuromasts and the inner ear. ISH analysis of embryos that lacked PHF8 showed alterations in the expression of many target genes of several signaling pathways concerning cell migration and deposition, including the Wnt and FGF pathways. In summary, the current findings established PHF8 as a novel epigenetic element in developing auditory organs, rendering it a potential candidate for hearing loss therapy.


Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 541-550 ◽  
Author(s):  
C.M. Haddon ◽  
J.H. Lewis

The membranous labyrinth of the inner ear, with its three semicircular canals, originates from a simple spheroidal otic vesicle. The process is easily observed in Xenopus. The vesicle develops three dorsal outpocketings; from the two opposite faces of each outpocketing pillars of tissue are protruded into the lumen; and these paired ‘axial protrusions’ eventually meet and fuse, to form a column of tissue spanning the lumen of the outpocketing like the hub of a wheel, with a tube of epithelium forming the semicircular canal around the periphery. Each axial protrusion consists of epithelium encasing a core of largely cell-free extracellular matrix that stains strongly with alcian blue. In sections, at least 60% of the stainable material is removed by treatment with Streptomyces hyaluronidase. When Streptomyces hyaluronidase is microinjected into the core of a protrusion in vivo, the protrusion collapses and the corresponding semicircular canal fails to form. Hyaluronan (hyaluronic acid) in the core of the protrusion therefore seems to be essential in driving the extension of the protrusion. Autoradiography with tritiated glucosamine indicates that the hyaluronan-rich matrix is synthesised by the epithelium covering the tip of the protrusion; the basal lamina here appears to be discontinuous. These findings indicate that the epithelium of the axial protrusion propels itself into the lumen of the otocyst by localised synthesis of hyaluronan. Hyaluronan may be used in a similar way in the development of other organs, such as the heart and the secondary palate.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2451-2461 ◽  
Author(s):  
D.M. Fekete ◽  
S.A. Homburger ◽  
M.T. Waring ◽  
A.E. Riedl ◽  
L.F. Garcia

An outstanding challenge in developmental biology is to reveal the mechanisms underlying the morphogenesis of complex organs. A striking example is the developing inner ear of the vertebrate, which acquires a precise three-dimensional arrangement of its constituent epithelial cells to form three semicircular canals, a central vestibule and a coiled cochlea (in mammals). In generating a semicircular canal, epithelial cells seem to ‘disappear’ from the center of each canal. This phenomenon has been variously explained as (i) transdifferentiation of epithelium into mesenchyme, (ii) absorption of cells into the expanding canal or (iii) programmed cell death. In this study, an in situ DNA-end labeling technique (the TUNEL protocol) was used to map regions of cell death during inner ear morphogenesis in the chicken embryo from embryonic days 3.5-10. Regions of cell death previously identified in vertebrate ears have been confirmed, including the ventromedial otic vesicle, the base of the endolymphatic duct and the fusion plates of the semicircular canals. New regions of cell death are also described in and around the sensory organs. Reducing normal death using retrovirus-mediated overexpression of human bcl-2 causes abnormalities in ear morphogenesis: hollowing of the center of each canal is either delayed or fails entirely. These data provide new evidence to explain the role of cell death in morphogenesis of the semicircular canals.


2019 ◽  
Author(s):  
Damian Dalle Nogare ◽  
Naveen Natesh ◽  
Ajay Chitnis

AbstractDuring embryonic development, cells must navigate through diverse three-dimensional environments robustly and reproducibly. The zebrafish posterior lateral line primordium (PLLp), a group of approximately 120 cells which migrates from the otic vesicle to the tip of the tail, spearheading the development of the lateral line sensory system, is an excellent model to study such collective migration in an in vivo context. This system migrates in a channel formed by the underlying horizontal myoseptum and somites, and the overlying skin. While cells in the leading part of the PLLp are flat and have a more mesenchymal morphology, cells in the trailing part progressively reorganize to form epithelial rosettes, called protoneuromasts. These epithelial cells extend basal cryptic lamellipodia in the direction of migration in response to both chemokine and FGF signals. In this study, we show that, in addition to these cryptic lamellipodia, the core epithelial cells are in fact surrounded by a population of motile cells which extend actin-rich migratory processes apposed to the overlying skin. These thin cells wrap around the protoneuromasts, forming a continuous sheath of cells around the apical and lateral surface of the PLLp. The processes extended by these cells are highly polarized in the direction of migration and this directionality, like that of the basal lamellipodia, is dependent on FGF signaling. Consistent with interactions of sheath cells with the overlying skin contributing to migration, removal of the skin stalls migration. However, this is accompanied by some surprising changes. There is a profound change in the morphology of the sheath cells, with directional superficial lamellipodia being replaced with the appearance of undirected blebs or ruffles. Furthermore, removal of the skin not only affects underlying lamellipodia, it simultaneously alters the morphology and behavior of the deeper basal cryptic lamellipodia, even though these cells do not directly contact the skin. Directional actin-rich protrusions on both the apical and basal surface and migration are completely and simultaneously restored upon regrowth of the skin over the PLLp. We suggest that this system utilizes a circumferential sheath of motile cells to allow the internal epithelial cells to migrate collectively in the confined space of the horizontal myopseptum and that elastic confinement provided by the overlying skin is essential for effective collective migratory behavior of primordium cells.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1051-1065
Author(s):  
Claudia B Zraly ◽  
Yun Feng ◽  
Andrew K Dingwall

Abstract We identified and characterized the Drosophila gene ear (ENL/AF9-related), which is closely related to mammalian genes that have been implicated in the onset of acute lymphoblastic and myelogenous leukemias when their products are fused as chimeras with those of human HRX, a homolog of Drosophila trithorax. The ear gene product is present in all early embryonic cells, but becomes restricted to specific tissues in late embryogenesis. We mapped the ear gene to cytological region 88E11-13, near easter, and showed that it is deleted by Df(3R)ea5022rx1, a small, cytologically invisible deletion. Annotation of the completed Drosophila genome sequence suggests that this region might contain as many as 26 genes, most of which, including ear, are not represented by mutant alleles. We carried out a large-scale noncom-plementation screen using Df(3R)ea5022rx1 and chemical (EMS) mutagenesis from which we identified sevenc novel multi-allele recessive lethal complementation groups in this region. An overlapping deficiency, Df(3R)Po4, allowed us to map several of these groups to either the proximal or the distal regions of Df(3R)ea5022rx1. One of these complementation groups likely corresponds to the ear gene as judged by map location, terminal phenotype, and reduction of EAR protein levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


Author(s):  
Marketa Kaucka ◽  
Bara Szarowska ◽  
Michaela Kavkova ◽  
Maria Eleni Kastriti ◽  
Polina Kameneva ◽  
...  

AbstractMelanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.


Author(s):  
Mehdi Bahri ◽  
Eimear O’ Sullivan ◽  
Shunwang Gong ◽  
Feng Liu ◽  
Xiaoming Liu ◽  
...  

AbstractStandard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potential benefits are multifold: inference is typically orders of magnitude faster than solving a new instance of a difficult optimization problem, deep learning models can be made robust to noise and corruption, and the trained model may be re-used for other tasks, e.g. through transfer learning. In this paper, we cast the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric information directly from raw 3D face scans. We introduce Shape-My-Face (SMF), a powerful encoder-decoder architecture based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip connections, and a specialized mouth model that we smoothly integrate with the mesh convolutions. Compared to the previous state-of-the-art learning algorithms for non-rigid registration of face scans, SMF only requires the raw data to be rigidly aligned (with scaling) with a pre-defined face template. Additionally, our model provides topologically-sound meshes with minimal supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and can generalize to previously unseen datasets. We extensively evaluate the quality of our registrations on diverse data. We demonstrate the robustness and generalizability of our model with in-the-wild face scans across different modalities, sensor types, and resolutions. Finally, we show that, by learning to register scans, SMF produces a hybrid linear and non-linear morphable model. Manipulation of the latent space of SMF allows for shape generation, and morphing applications such as expression transfer in-the-wild. We train SMF on a dataset of human faces comprising 9 large-scale databases on commodity hardware.


Sign in / Sign up

Export Citation Format

Share Document