Role of dpp signalling in prepattern formation of the dorsocentral mechanosensory organ in Drosophila melanogaster

Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4215-4224 ◽  
Author(s):  
Y. Tomoyasu ◽  
M. Nakamura ◽  
N. Ueno

A proneural cluster of dorsocentral bristles forms adjacent to the dorsal side of wg-expressing cells in the notum region of the wing imaginal disc. It has been shown that wg activity is required for these structures to form. However, the restriction of this proneural cluster to the dorsal posterior side of the wg expression domain in the anterior compartment of the wing imaginal disc has suggested that Wg signalling itself is insufficient to establish the dorsocentral proneural cluster. Some factor(s) from the posterior side must participate in this action in cooperation with Wg signalling. We have examined the role of Dpp signalling in dorsocentral bristle formation by either ectopically activating or conditionally reducing Dpp signalling. Ubiquitous activation of Dpp signalling in the notum region of the wing imaginal disc induced additional dorsocentral proneural cluster all along the dorsal side of the wg expression domain, and altered wg expression. Conditional loss-of-function of Dpp signalling during disc development resulted in the inhibition of dorsocentral proneural cluster formation and expansion of the wg expression domain. These results suggest that Dpp signalling has two indispensable roles in dorsocentral bristle formation: induction of the dorsocentral proneural cluster in cooperation with Wg signalling and restriction of the wg expression domain in the notum region of the wing imaginal disc.

2016 ◽  
Author(s):  
Jerome Chal ◽  
Charlene Guillot ◽  
Olivier Pourquie

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the Segmentation Clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of Paraxial protocadherin (PAPC/Pcdh8) in this process. We show that in chicken and mouse embryos, PAPC expression is tightly regulated by the Clock and Wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-Cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of PAPC in chicken embryos disrupt somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus periodic expression of PAPC downstream of the Segmentation Clock triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3359-3369 ◽  
Author(s):  
T. Tabata ◽  
C. Schwartz ◽  
E. Gustavson ◽  
Z. Ali ◽  
T.B. Kornberg

Anterior/posterior compartment borders bisect every Drosophila imaginal disc, and the engrailed gene is essential for their function. We analyzed the role of the engrailed and invected genes in wing discs by eliminating or increasing their activity. Removing engrailed/invected from posterior wing cells created two new compartments: an anterior compartment consisting of mutant cells and a posterior compartment that grew from neighboring cells. In some cases, these compartments formed a complete new wing. Increasing engrailed activity also affected patterning. These findings demonstrate that engrailed both directs the posterior compartment pathway and creates the compartment border. These findings also establish the compartment border as the pre-eminent organizational feature of disc growth and patterning.


Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev195974
Author(s):  
Ryo Hatori ◽  
Thomas B. Kornberg

ABSTRACTHedgehog (Hh) is an evolutionarily conserved signaling protein that has essential roles in animal development and homeostasis. We investigated Hh signaling in the region of the Drosophila wing imaginal disc that produces Hh and is near the tracheal air sac primordium (ASP) and myoblasts. Hh distributes in concentration gradients in the anterior compartment of the wing disc, ASP and myoblasts, and activates genes in each tissue. Some targets of Hh signal transduction are common to the disc, ASP and myoblasts, whereas others are tissue-specific. Signaling in the three tissues is cytoneme-mediated and cytoneme-dependent. Some ASP cells project cytonemes that receive both Hh and Branchless (Bnl), and some targets regulated by Hh signaling in the ASP are also dependent on Bnl signal transduction. We conclude that the single source of Hh in the wing disc regulates cell type-specific responses in three discreet target tissues.


2017 ◽  
Author(s):  
Stefan Harmansa ◽  
Ilaria Alborelli ◽  
Emmanuel Caussinus ◽  
Markus Affolter

AbstractInvestigating the role of protein localization is crucial to understand protein function in cells or tissues. However, in many cases the role of different subcellular fractions of given proteins along the apical-basal axis of polarized cells has not been investigated in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a nanobody-based toolbox to modify the localization and the dispersal of GFP-tagged proteins along the apical-basal axis of polarized cells. We show that the GrabFP system is an effective and easy-to-implement tool to mislocalize cytosolic and transmembrane GFP-tagged proteins and thereby functionally investigate protein localization along the apical-basal axis. We use the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.


2020 ◽  
Author(s):  
Ryo Hatori ◽  
Thomas B. Kornberg

AbstractHedgehog (Hh) is an evolutionarily conserved signaling protein that has essential roles in animal development and homeostasis. We investigated Hh signaling in the region of the Drosophila wing imaginal disc that produces Hh and is near the tracheal air sac primordium (ASP) and myoblasts. Hh distributes in concentration gradients in the wing disc anterior compartment, ASP, and myoblasts and activates different sets of genes in each tissue. Some transcriptional targets of Hh signal transduction are common to the disc, ASP, and myoblasts, whereas others are tissue-specific. Signaling in the three tissues is cytoneme-mediated and cytoneme-dependent. We conclude that a single source of Hh in the wing disc regulates cell type-specific responses in three discreet target tissues.SummaryHedgehog produced by the wing imaginal disc signals to wing disc, myoblast and tracheal cells


2019 ◽  
Vol 20 (13) ◽  
pp. 3288 ◽  
Author(s):  
Tran Duy Binh ◽  
Tuan L. A. Pham ◽  
Taisei Nishihara ◽  
Tran Thanh Men ◽  
Kaeko Kamei

Lipin is evolutionarily conserved from yeast to mammals. Although its roles in lipid metabolism in adipocyte tissue, skeletal muscle, and the liver, and as a transcriptional co-activator are known, its functions during development are still under investigation. In this study, we analyzed the role of Drosophila lipin (dLipin) in development. Specifically, we showed that the tissue-selective knockdown of dLipin in the wing pouch led to an atrophied wing. Elevated DNA damage was observed in the wing imaginal disc of dLipin-knockdown flies. dLipin dysfunction induced accumulation of cells in S phase and significantly reduced the number of mitotic cells, indicating DNA damage-induced activation of the G2/M checkpoint. Reduced expression of cyclin B, which is critical for the G2 to M transition, was observed in the margin of the wing imaginal disc of dLipin-knockdown flies. The knockdown of dLipin led to increased apoptotic cell death in the wing imaginal disc. Thus, our results suggest that dLipin is involved in DNA replication during normal cell cycle progression in wing development of Drosophila melanogaster.


2019 ◽  
Author(s):  
Sebastian Duncan ◽  
Samuel Delage ◽  
Alexa Chioran ◽  
Olga Sirbu ◽  
Theodore J. Brown ◽  
...  

AbstractThe assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work in Drosophila indicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocytes. Mutating the collagen-binding epitopes of SPARC leads to 2nd instar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant reveals increased Col(IV) puncta within adipocytes and intense perimeter Col(IV) staining surrounding the fat body as compared to wild-type larvae, reflecting a disruption in chaperone-like activity. In addition, Col(IV) in the wing imaginal disc was absent. Removal of the disulfide bridge in EF-hand2, which is known to enhance Col(IV) binding by SPARC, did not lead to larval lethality; however, a similar but less intense fat body phenotype was observed. Additionally, both SPARC mutants have altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices, indicating a distinct variant. Collectively, these data demonstrate the essential role of Col(IV) chaperone-like activity of SPARC to Drosophila development and indicate tissue-specific variants with differential functions.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Joanne M. Hildebrand ◽  
Bernice Lo ◽  
Sara Tomei ◽  
Valentina Mattei ◽  
Samuel N. Young ◽  
...  

AbstractMaturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL−/− human cell lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY’s incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human disease.


Sign in / Sign up

Export Citation Format

Share Document