proneural cluster
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Vikram Sudarsan ◽  
Sara Pasalodos-Sanchez ◽  
Susan Wan ◽  
Alexandra Gampel ◽  
Helen Skaer

Cell proliferation in the developing renal tubules of Drosophila is strikingly patterned, occurring in two phases to generate a consistent number of tubule cells. The later phase of cell division is promoted by EGF receptor signalling from a specialised subset of tubule cells, the tip cells, which express the protease Rhomboid and are thus able to secrete the EGF ligand, Spitz. We show that the response to EGF signalling, and in consequence cell division, is patterned by the specification of a second cell type in the tubules. These cells are primed to respond to EGF signalling by the transcription of two pathway effectors, PointedP2, which is phosphorylated on pathway activation, and Seven up. While expression of pointedP2 is induced by Wingless signalling, seven up is initiated in a subset of the PointedP2 cells through the activity of the proneural genes. We demonstrate that both signalling and responsive cells are set aside in each tubule primordium from a proneural gene-expressing cluster of cells, in a two-step process. First, a proneural cluster develops within the domain of Wingless-activated, pointedP2-expressing cells to initiate the co-expression of seven up. Second, lateral inhibition, mediated by the neurogenic genes, acts within this cluster of cells to segregate the tip cell precursor, in which proneural gene expression strengthens to initiate rhomboid expression. As a consequence, when the precursor cell divides, both daughters secrete Spitz and become signalling cells. Establishing domains of cells competent to transduce the EGF signal and divide ensures a rapid and reliable response to mitogenic signalling in the tubules and also imposes a limit on the extent of cell division, thus preventing tubule hyperplasia.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3523-3532 ◽  
Author(s):  
M.J. Garcia-Garcia ◽  
P. Ramain ◽  
P. Simpson ◽  
J. Modolell

In Drosophila, the GATA family transcription factor Pannier and the Wnt secreted protein Wingless are known to be important for the patterning of the notum, a part of the dorsal mesothorax of the fly. Thus, both proteins are necessary for the development of the dorsocentral mechanosensory bristles, although their roles in this process have not been clarified. Here, we show that Pannier directly activates the proneural genes achaete and scute by binding to the enhancer responsible for the expression of these genes in the dorsocentral proneural cluster. Moreover, the boundary of the expression domain of Pannier appears to delimit the proneural cluster laterally, while antagonism of Pannier function by the Zn-finger protein U-shaped sets its limit dorsally. So, Pannier and U-shaped provide positional information for the patterning of the dorsocentral cluster. In contrast and contrary to previous suggestions, Wingless does not play a similar role, since the levels and vectorial orientation of its concentration gradient in the dorsocentral area can be greatly modified without affecting the position of the dorsocentral cluster. Thus, Wingless has only a permissive role on dorsocentral achaete-scute expression. We also provide evidence indicating that Pannier and U-shaped are main effectors of the regulation of wingless expression in the presumptive notum.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3149-3157 ◽  
Author(s):  
P. zur Lage ◽  
A.P. Jarman

The selection of Drosophila melanogaster sense organ precursors (SOPs) for sensory bristles is a progressive process: each neural equivalence group is transiently defined by the expression of proneural genes (proneural cluster), and neural fate is refined to single cells by Notch-Delta lateral inhibitory signalling between the cells. Unlike sensory bristles, SOPs of chordotonal (stretch receptor) sense organs are tightly clustered. Here we show that for one large adult chordotonal SOP array, clustering results from the progressive accumulation of a large number of SOPs from a persistent proneural cluster. This is achieved by a novel interplay of inductive epidermal growth factor-receptor (EGFR) and competitive Notch signals. EGFR acts in opposition to Notch signalling in two ways: it promotes continuous SOP recruitment despite lateral inhibition, and it attenuates the effect of lateral inhibition on the proneural cluster equivalence group, thus maintaining the persistent proneural cluster. SOP recruitment is reiterative because the inductive signal comes from previously recruited SOPs.


Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4215-4224 ◽  
Author(s):  
Y. Tomoyasu ◽  
M. Nakamura ◽  
N. Ueno

A proneural cluster of dorsocentral bristles forms adjacent to the dorsal side of wg-expressing cells in the notum region of the wing imaginal disc. It has been shown that wg activity is required for these structures to form. However, the restriction of this proneural cluster to the dorsal posterior side of the wg expression domain in the anterior compartment of the wing imaginal disc has suggested that Wg signalling itself is insufficient to establish the dorsocentral proneural cluster. Some factor(s) from the posterior side must participate in this action in cooperation with Wg signalling. We have examined the role of Dpp signalling in dorsocentral bristle formation by either ectopically activating or conditionally reducing Dpp signalling. Ubiquitous activation of Dpp signalling in the notum region of the wing imaginal disc induced additional dorsocentral proneural cluster all along the dorsal side of the wg expression domain, and altered wg expression. Conditional loss-of-function of Dpp signalling during disc development resulted in the inhibition of dorsocentral proneural cluster formation and expansion of the wg expression domain. These results suggest that Dpp signalling has two indispensable roles in dorsocentral bristle formation: induction of the dorsocentral proneural cluster in cooperation with Wg signalling and restriction of the wg expression domain in the notum region of the wing imaginal disc.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3881-3893 ◽  
Author(s):  
D. Doherty ◽  
L.Y. Jan ◽  
Y.N. Jan

In the developing nervous system of Drosophila, cells in each proneural cluster choose between neural and epidermal cell fates. The neurogenic genes mediate the cell-cell communication process whereby one cell adopts the neural cell fate and prevents other cells in the cluster from becoming neural. In the absence of neurogenic gene function, most, if not all of the cells become neural. big brain is a neurogenic gene that encodes a protein with sequence similarity to known channel proteins. It is unique among the neurogenic genes in that previous genetic studies have not revealed any interaction between big brain and the other neurogenic genes. Furthermore, the neural hypertrophy in big brain mutant embryos is less severe than that in embryos mutant for other neurogenic genes. In this paper, we show by antibody staining that bib is expressed in tissues that give rise to neural precursors and in other tissues that are affected by loss of neurogenic gene function. By immunoelectron microscopy, we found that bib is associated with the plasma membrane and concentrated in apical adherens junctions as well as in small cytoplasmic vesicles. Using mosaic analysis in the adult, we demonstrate that big brain activity is required autonomously in epidermal precursors to prevent neural development. Finally, we demonstrate that ectopically expressed big brain acts synergistically with ectopically expressed Delta and Notch, providing the first evidence that big brain may function by augmenting the activity of the Delta-Notch pathway. These results are consistent with bib acting as a channel protein in proneural cluster cells that adopt the epidermal cell fate, and serving a necessary function in the response of these cells to the lateral inhibition signal.


Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2015-2025 ◽  
Author(s):  
L. Seugnet ◽  
P. Simpson ◽  
M. Haenlin

Segregation of a single neural precursor from each proneural cluster in Drosophila relies on Notch-mediated lateral signalling. Studies concerning the spacing of precursors for the microchaetes of the peripheral nervous system suggested the existence of a regulatory loop between Notch and its ligand Delta within each cell that is under transcriptional control. Activation of Notch leads to repression of the achaete-scute genes which themselves regulate transcription of Delta, perhaps directly. Here we have tested a requirement for transcriptional regulation of Notch and/or Delta during neuroblast segregation in embryos, by providing Notch and Delta ubiquitously at uniform levels. Neuroblast segregation occurs normally under conditions of uniform Notch expression. Under conditions of uniform Delta expression, a single neuroblast segregates from each proneural group in 80% of the cases, more than one in the remaining 20%. Thus transcriptional regulation of Delta is largely dispensable. We discuss the possibility that segregation of single precursors in the central nervous system may rely on a heterogeneous distribution of neural potential between different cells of the proneural group. Notch signalling would enable all cells to mutually repress each other and only a cell with an elevated neural potential could overcome this repression.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4139-4147 ◽  
Author(s):  
M.E. Dokucu ◽  
S.L. Zipursky ◽  
R.L. Cagan

In the developing Drosophila retina, the proneural gene for photoreceptor neurons is atonal, a basic helix-loop-helix transcription factor. Using atonal as a marker for proneural maturation, we examine the stepwise resolution of proneural clusters during the initiation of ommatidial differentiation in the developing eye disc. In addition, evidence is provided that atonal is negatively regulated by rough, a homeobox-containing transcription factor expressed exclusively in the retina. This interaction leads to the refinement of proneural clusters to specify R8, the first neuron to emerge in the retinal neuroepithelium. Ectopic expression of atonal or removal of rough results in the transformation of a discrete ‘equivalence group’ of cells into R8s. In addition, ectopic expression of rough blocks atonal expression and proneural cluster formation within the morphogenetic furrow. Thus, rough provides retina-specific regulation to the more general atonal-mediated proneural differentiation pathway. The opposing roles of atonal and rough are not mediated through the Notch pathway, as their expression remains complementary when Notch activity is reduced. These observations suggest that homeobox-containing genes can provide tissue-specific regulation to bHLH factors.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1875-1884 ◽  
Author(s):  
F. Schweisguth

Suppressor of Hairless (Su(H)) activity is zygotically required in larval imaginal discs for the singling out of adult sense organ precursor (SOP) cells: loss of Su(H) function results in too many proneural cluster cells adopting the SOP fate, while overexpression of the Su(H) protein prevents SOP specification. Su(H) null mutant alleles are recessive lethal at the late larval and early pupal stages. The development of Su(H) mutant cells in pupae was therefore studied in somatic clones. Clonal analysis first showed that Su(H) is required for the regular spacing of microchaete precursor cells, as clusters of mutant SOPs were detected at positions where singled out sense organ cells are normally found. Second, Su(H) mutant SOPs produced neuron-like cells, consistent with a late defect in Notch (N) signalling. Third, a careful cell-by-cell analysis of clone borders showed that Su(H) mutant cells may adopt the SOP fate even when directly adjacent to wild-type cells. Finally, quantitative clone border analysis indicates that the relative level of Su(H) gene dosage appears to bias the selection of the future SOP: cells with a higher level of Su(H) activity are more likely to adopt the epidermal fate. These results show that notum cells strictly require Su(H) activity for receiving the lateral inhibitory signal. Thus, the DNA-binding protein encoded by the Su(H) gene may act downstream of the N receptor to implement the epidermal, non-SOP fate.


Sign in / Sign up

Export Citation Format

Share Document