VEGF deprivation-induced apoptosis is a component of programmed capillary regression

Development ◽  
1999 ◽  
Vol 126 (7) ◽  
pp. 1407-1415 ◽  
Author(s):  
A.P. Meeson ◽  
M. Argilla ◽  
K. Ko ◽  
L. Witte ◽  
R.A. Lang

The pupillary membrane (PM) is a transient ocular capillary network, which can serve as a model system in which to study the mechanism of capillary regression. Previous work has shown that there is a tight correlation between the cessation of blood flow in a capillary segment and the appearance of apoptotic capillary cells throughout the segment. This pattern of cell death is referred to as synchronous apoptosis (Lang, R. A., Lustig, M., Francois, F., Sellinger, M. and Plesken, H. (1994) Development 120, 3395–3404; Meeson, A., Palmer, M., Calfon, M. and Lang, R. A. (1996) Development 122, 3929–3938). In the present study, we have investigated whether the cause of synchronous apoptosis might be a segmental deficiency of either oxygen or a survival factor. Labeling with the compound EF5 in a normal PM indicated no segmental hypoxia; this argued that oxygen deprivation was unlikely to be the cause of synchronous apoptosis. When rat plasma was used as a source of survival factors in an in vitro PM explant assay, inhibition of vascular endothelial growth factor (VEGF) all but eliminated the activity of plasma in suppressing apoptosis. This argued that VEGF was an important plasma survival factor. Furthermore, inhibition of VEGF in vivo using fusion proteins of the human Flk-1/KDR receptor resulted in a significantly increased number of capillaries showing synchronous apoptosis. This provides evidence that VEGF is necessary for endothelial cell survival in this system and in addition, that VEGF deprivation mediated by flow cessation is a component of synchronous apoptosis.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3097
Author(s):  
Takashi Ando ◽  
Jiro Ichikawa ◽  
Taro Fujimaki ◽  
Naofumi Taniguchi ◽  
Yoshihiro Takayama ◽  
...  

The overall prognosis for sarcoma-based cancer patients has remained largely unchanged over the past 10 years. Because there is no effective anticancer drug for patients with chemoresistant osteosarcoma (OS), novel approaches are needed to improve the prognosis. Here, we investigated whether rapamycin (Rapa) could enhance the anti-tumor effects of gemcitabine (Gem) in OS. Gem dose-dependently killed the OS cells, but exhibited much lower cytotoxicity on osteoblasts. Treatment with a combination Gem and Rapa was much more effective than that of either single agent with respect to reducing cell viability, cell invasion, cell migration, and vascular endothelial growth factor production in vitro. Moreover, the combination of these agents suppressed tumor growth, angiogenesis, and lung metastasis in allograft and xenograft murine models of OS with minimal adverse effects. Overall, the combination therapy prolonged the overall survival of tumor-bearing mice. Mechanistically, Gem induced apoptosis and increased the levels of cleaved caspases, while Rapa induced autophagy and microtubule-associated protein light chain 3 (LC3)-I/LC3-II expression both in vitro and in vivo. Our findings suggest that chemotherapy using Gem combined with Rapa may be a novel and promising therapeutic approach for the treatment of OS.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4127
Author(s):  
Aline de Cristo Soares Alves ◽  
Franciele Aline Bruinsmann ◽  
Silvia Stanisçuaski Guterres ◽  
Adriana Raffin Pohlmann

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4150-4166 ◽  
Author(s):  
Dmitry Gabrilovich ◽  
Tadao Ishida ◽  
Tsunehiro Oyama ◽  
Sophia Ran ◽  
Vladimir Kravtsov ◽  
...  

Abstract Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.


2020 ◽  
Vol 21 (13) ◽  
pp. 4627
Author(s):  
Olivia Rastoin ◽  
Gilles Pagès ◽  
Maeva Dufies

Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document